The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 341 –
360 of
375
We prove anisotropic interpolation error estimates for quadrilateral and hexahedral elements with all possible shape function spaces, which cover the intermediate families, tensor product families and serendipity families. Moreover, we show that the anisotropic interpolation error estimates hold for derivatives of any order. This goal is accomplished by investigating an interpolation defined via orthogonal expansions.
In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in . Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems...
The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant...
Cohen, Dahmen and DeVore designed in [Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 2001, 70(233), 27–75] and [Adaptive wavelet methods II¶beyond the elliptic case, Found. Comput. Math., 2002, 2(3), 203–245] a general concept for solving operator equations. Its essential steps are: transformation of the variational formulation into the well-conditioned infinite-dimensional l 2-problem, finding the convergent iteration process for the l 2-problem and finally...
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, and . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.
The paper presents the analysis, approximation and numerical realization of 3D contact problems for an elastic body unilaterally supported by a rigid half space taking into account friction on the common surface. Friction obeys the simplest Tresca model (a slip bound is given a priori) but with a coefficient of friction which depends on a solution. It is shown that a solution exists for a large class of and is unique provided that is Lipschitz continuous with a sufficiently small modulus of...
The present paper deals with numerical solution of the contact problem with given friction. By a suitable choice of multipliers the whole problem is transformed to that of finding a saddle-point of the Lagrangian function on a certain convex set . The approximation of this saddle-point is defined, the convergence is proved and the rate of convergence established. For the numerical realization Uzawa’s algorithm is used. Some examples are given in the conclusion.
We study the approximation of harmonic functions by means of harmonic polynomials in two-dimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a δ-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on δ. We apply the obtained estimates...
We give results for the approximation of a laminate with
varying volume fractions for multi-well energy minimization
problems modeling martensitic crystals that
can undergo either an orthorhombic
to monoclinic or a cubic to tetragonal transformation.
We construct energy minimizing sequences of deformations which satisfy
the corresponding boundary condition, and we
establish a series of error bounds in terms of the elastic energy
for the approximation of the limiting macroscopic
deformation and...
By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally,...
Currently displaying 341 –
360 of
375