Displaying 2281 – 2300 of 2633

Showing per page

Vibrations of a folded plate

Hervé Le Dret (1990)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Von Kármán equations. III. Solvability of the von Kármán equations with conditions for geometry of the boundary of the domain

Július Cibula (1991)

Applications of Mathematics

Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the functional of energy attains absolute minimum which is a variational solution of the problem.

Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction

M. Bostan, P. Hild (2009)

Mathematical Modelling of Natural Phenomena

This work is concerned with the equilibrium configurations of elastic structures in contact with Coulomb friction. We obtain a variational formulation of this equilibrium problem. Then we propose sufficient conditions for the existence of an infinity of equilibrium configurations with arbitrary small friction coefficients. We illustrate the result in two space dimensions with a simple example.

Weak solutions for a fluid-elastic structure interaction model.

Benoit Desjardins, María J. Esteban, Céline Grandmont, Patrick Le Tallec (2001)

Revista Matemática Complutense

The purpose of this paper is to study a model coupling an incompressible viscous fiuid with an elastic structure in a bounded container. We prove the existence of weak solutions à la Leray as long as no collisions occur.

Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems

Mustapha Bouallala (2024)

Applications of Mathematics

We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional...

Weak uniqueness and partial regularity for the composite membrane problem

Sagun Chanillo, Carlos E. Kenig (2008)

Journal of the European Mathematical Society

We study the composite membrane problem in all dimensions. We prove that the minimizing solutions exhibit a weak uniqueness property which under certain conditions can be turned into a full uniqueness result. Next we study the partial regularity of the solutions to the Euler–Lagrange equation associated to the composite problem and also the regularity of the free boundary for solutions to the Euler–Lagrange equations.

Weight minimization of an elastic plate with a unilateral inner obstacle by a mixed finite element method

Ivan Hlaváček (1994)

Applications of Mathematics

Unilateral deflection problem of a clamped plate above a rigid inner obstacle is considered. The variable thickness of the plate is to be optimized to reach minimal weight under some constraints for maximal stresses. Since the constraints are expressed in terms of the bending moments only, Herrmann-Hellan finite element scheme is employed. The existence of an optimal thickness is proved and some convergence analysis for approximate penalized optimal design problem is presented.

Weight minimization of elastic bodies weakly supporting tension. II. Domains with two curved sides

Ivan Hlaváček, Michal Křížek (1992)

Applications of Mathematics

Extending the results of the previous paper [1], the authors consider elastic bodies with two design variables, i.e. "curved trapezoids" with two curved variable sides. The left side is loaded by a hydrostatic pressure. Approximations of the boundary are defined by cubic Hermite splines and piecewise linear finite elements are used for the displacements. Both existence and some convergence analysis is presented for approximate penalized optimal design problems.

Weight minimization of elastic bodies weakly supporting tension. I. Domains with one curved side

Ivan Hlaváček, Michal Křížek (1992)

Applications of Mathematics

Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed.

Currently displaying 2281 – 2300 of 2633