Displaying 241 – 260 of 434

Showing per page

A variational problem modelling behavior of unorthodox silicon crystals

J. Hannon, M. Marcus, Victor J. Mizel (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Controlling growth at crystalline surfaces requires a detailed and quantitative understanding of the thermodynamic and kinetic parameters governing mass transport. Many of these parameters can be determined by analyzing the isothermal wandering of steps at a vicinal [“step-terrace”] type surface [for a recent review see [4]]. In the case of o r t h o d o x crystals one finds that these meanderings develop larger amplitudes as the equilibrium temperature is raised (as is consistent with the statistical mechanical...

A Variational Problem Modelling Behavior of Unorthodox Silicon Crystals

J. Hannon, M. Marcus, Victor J. Mizel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Controlling growth at crystalline surfaces requires a detailed and quantitative understanding of the thermodynamic and kinetic parameters governing mass transport. Many of these parameters can be determined by analyzing the isothermal wandering of steps at a vicinal [“step-terrace”] type surface [for a recent review see [4]]. In the case of orthodox crystals one finds that these meanderings develop larger amplitudes as the equilibrium temperature is raised (as is consistent with the statistical...

A variationally consistent generalized variable formulation of the elastoplastic rate problem

Claudia Comi, Umberto Perego (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry...

A verified method for solving piecewise smooth initial value problems

Ekaterina Auer, Stefan Kiel, Andreas Rauh (2013)

International Journal of Applied Mathematics and Computer Science

In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview...

A viscoelastic contact problem with normal damped response and friction

B. Awbi, El H. Essoufi, M. Sofonea (2000)

Annales Polonici Mathematici

We study an evolution problem which describes the quasistatic contact of a viscoelastic body with a foundation. We model the contact with normal damped response and a local friction law. We derive a variational formulation of the model and we establish the existence of a unique weak solution to the problem. The proof is based on monotone operators and fixed point arguments. We also establish the continuous dependence of the solution on the contact boundary conditions.

A Viscoelastic Frictionless Contact Problem with Adhesion

Arezki Touzaline (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider a mathematical model which describes the equilibrium between a viscoelastic body in frictionless contact with an obstacle. The contact is modelled with normal compliance, associated with Signorini's conditions and adhesion. The adhesion is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove the existence and uniqueness of the weak solution....

A viscoelastic model with non-local damping application to the human lungs

Céline Grandmont, Bertrand Maury, Nicolas Meunier (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we elaborate a model to describe some aspects of the human lung considered as a continuous, deformable, medium. To that purpose, we study the asymptotic behavior of a spring-mass system with dissipation. The key feature of our approach is the nature of this dissipation phenomena, which is related here to the flow of a viscous fluid through a dyadic tree of pipes (the branches), each exit of which being connected to an air pocket (alvelola) delimited by two successive masses. The...

A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies

Alice Fiaschi (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution in terms...

A Young measures approach to quasistatic evolution for a class of material models with nonconvex elastic energies

Alice Fiaschi (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution in terms...

About asymptotic approximations in thin waveguides

Nicole Turbe, Louis Ratier (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.

About asymptotic approximations in thin waveguides

Nicole Turbe, Louis Ratier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.

Currently displaying 241 – 260 of 434