Displaying 341 – 360 of 2623

Showing per page

Analysis of a frictionless contact problem for elastic bodies

S. Drabla, M. Sofonea, B. Teniou (1998)

Annales Polonici Mathematici

This paper deals with a nonlinear problem modelling the contact between an elastic body and a rigid foundation. The elastic constitutive law is assumed to be nonlinear and the contact is modelled by the well-known Signorini conditions. Two weak formulations of the model are presented and existence and uniqueness results are established using classical arguments of elliptic variational inequalities. Some equivalence results are presented and a strong convergence result involving a penalized problem...

Analysis of a new augmented mixed finite element method for linear elasticity allowing ℝ𝕋 0 - 1 - 0 approximations

Gabriel N. Gatica (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a new stabilized mixed finite element method for the linear elasticity problem in 2 . The approach is based on the introduction of Galerkin least-squares terms arising from the constitutive and equilibrium equations, and from the relation defining the rotation in terms of the displacement. We show that the resulting augmented variational formulation and the associated Galerkin scheme are well posed, and that the latter becomes locking-free and asymptotically locking-free for Dirichlet...

Analysis of a one-dimensional variational model of the equilibrium shapel of a deformable crystal

Eric Bonnetier, Richard S. Falk, Michael A. Grinfeld (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The equilibrium configurations of a one-dimensional variational model that combines terms expressing the bulk energy of a deformable crystal and its surface energy are studied. After elimination of the displacement, the problem reduces to the minimization of a nonconvex and nonlocal functional of a single function, the thickness. Depending on a parameter which strengthens one of the terms comprising the energy at the expense of the other, it is shown that this functional may have a stable absolute...

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Analysis of a quasicontinuum method in one dimension

Christoph Ortner, Endre Süli (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic models with Lennard–Jones type long-range interactions and a QC formulation which incorporates several important aspects of practical QC methods. First, we prove the existence, the local uniqueness...

Analysis of a viscoelastic antiplane contact problem with slip-dependent friction

Thierry-Vincent Hoarau-Mantel, Andaluzia Matei (2002)

International Journal of Applied Mathematics and Computer Science

We study a mathematical problem modelling the antiplane shear deformation of a viscoelastic body in frictional contact with a rigid foundation. The contact is bilateral and is modelled with a slip-dependent friction law. We present the classical formulation for the antiplane problem and write the corresponding variational formulation. Then we establish the existence of a unique weak solution to the model, by using the Banach fixed-point theorem and classical results for elliptic variational inequalities....

Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems

Jozef Kačur, Alexander Ženíšek (1986)

Aplikace matematiky

The authors study problems of existence and uniqueness of solutions of various variational formulations of the coupled problem of dynamical thermoelasticity and of the convergence of approximate solutions of these problems. First, the semidiscrete approximate solutions is defined, which is obtained by time discretization of the original variational problem by Euler’s backward formula. Under certain smoothness assumptions on the date authors prove existence and uniqueness of the solution and establish...

Analysis of crack singularities in an aging elastic material

Martin Costabel, Monique Dauge, SergeïA. Nazarov, Jan Sokolowski (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a quasistatic system involving a Volterra kernel modelling an hereditarily-elastic aging body. We are concerned with the behavior of displacement and stress fields in the neighborhood of cracks. In this paper, we investigate the case of a straight crack in a two-dimensional domain with a possibly anisotropic material law. We study the asymptotics of the time dependent solution near the crack tips. We prove that, depending on the regularity of the material law and the Volterra kernel,...

Analysis of optimality conditions for some topology optimization problems in elasticity

Luis Trabucho (2002)

International Journal of Applied Mathematics and Computer Science

The subject of topology optimization has undergone an enormous practical development since the appearance of the paper by Bendso e and Kikuchi (1988), where some ideas from homogenization theory were put into practice. Since then, several engineering applications as well as different approaches have been developed successfully. However, it is difficult to find in the literature some analytical examples that might be used as a test in order to assess the validity of the solutions obtained with different...

Currently displaying 341 – 360 of 2623