The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
221
We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.
We study the simultaneously reachable subspace for two strings
controlled from a common endpoint. We give necessary
and sufficient conditions for simultaneous spectral and approximate
controllability. Moreover we prove the lack of simultaneous exact
controllability
and we study the space of simultaneously reachable states
as a function of the position of the joint. For each type of controllability
result we give the sharp controllability time.
In this note we give a result of convergence when time goes to infinity for a
quasi static linear elastic model, the elastic tensor of which vanishes at
infinity. This method is applied to segmentation of medical images, and improves
the 'elastic deformable template' model introduced previously.
This paper concerns an optimal control problem of elliptic singular perturbations in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result...
The singularities occurring in any sort of ordering are known in physics as defects. In an organized fluid defects may occur both at microscopic (molecular) and at macroscopic scales when hydrodynamic ordered structures are developed. Such a fluid system serves as a model for the study of the evolution towards a strong disorder (chaos) and it is found that the singularities play an important role in the nature of the chaos. Moreover both types of defects become coupled at the onset of turbulence....
The fundamental problem in the application of the principle of complementary energy is the construction of suitable subsets that approximate the set of all statically admissible fields satisfying both the conditions of equilibrium inside the body and the static boundary conditions.
The notion “slab analogy” is motivated and the interface conditions for the Airy stress function are established at the contact of two domains. Some spaces of types of conforming equilibrium stress elements, which can...
In this paper, we compare a biomechanics empirical model of the heart fibrous structure to two models obtained by a non-periodic homogenization process. To this end, the two homogenized models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic elastic materials is also derived and allows us to obtain a third simplified model.
In this work we investigate a mathematical model for small vertical vibrations of a stretched string when the ends vary with the time t and the cross sections of the string is variable and the density of the material is also variable, that is, p=p(x). It contains Kirchhoff model for fixed ends. We obtain solutions by Galerkin method and estimates in Sobolev spaces.
We consider the motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain. For such a system the Cauchy problem is well-posed locally in time if the initial velocity of the fluid is in the Hölder space . In this paper we prove that the smoothness of the motion of the rigid body may be only limited by the smoothness of the boundaries (of the body and of the domain). In particular for analytic boundaries the motion of the rigid body is analytic...
The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute the needed...
Many authors discussed the problem of an elastic infinite plate with a curvilinear hole, some of them considered this problem in z-plane and the others in the s-plane. They obtained an exact expression for Goursat's functions for the first and second fundamental problem. In this paper, we use the Cauchy integral method to obtain a solution to the first and second fundamental problem by using a new transformation. Some applications are investigated and also some special cases are discussed.
This paper presents the main concept and several key features of the user-defined interface of COMSOL Java API for the solution of mechanical problems in fractured rock. This commercial computational system based on FEM has yet to incorporate fractures in mechanical problems.
Our aim is to solve a 2D mechanical problem with a fracture which is defined separately from finite-element discretization and the fracture properties are included through the constitutive laws. This will be performed based...
A problem of unilateral contact between an elasto-plastic body and a rigid frictionless foundation is solved within the range of the so called deformation theory of plasticity. The weak solution is defined by means of a variational inequality. Then the so called secant module (Kačanov's) iterative method is introduced, each step of which corresponds to a Signorini's problem of elastoplastics. The convergence of the method is proved on an abstract level.
Currently displaying 41 –
60 of
221