Displaying 41 – 60 of 218

Showing per page

Simultaneous controllability in sharp time for two elastic strings

Sergei Avdonin, Marius Tucsnak (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Singular Perturbations For Heart Image Segmentation Tracking

J. Pousin (2009)

Mathematical Modelling of Natural Phenomena

In this note we give a result of convergence when time goes to infinity for a quasi static linear elastic model, the elastic tensor of which vanishes at infinity. This method is applied to segmentation of medical images, and improves the 'elastic deformable template' model introduced previously.

Singular perturbations in optimal control problem with application to nonlinear structural analysis

Ján Lovíšek (1996)

Applications of Mathematics

This paper concerns an optimal control problem of elliptic singular perturbations in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result...

Singularities, defects and chaos in organized fluids

Roland Ribotta, Ahmed Belaidi, Alain Joets (2003)

Banach Center Publications

The singularities occurring in any sort of ordering are known in physics as defects. In an organized fluid defects may occur both at microscopic (molecular) and at macroscopic scales when hydrodynamic ordered structures are developed. Such a fluid system serves as a model for the study of the evolution towards a strong disorder (chaos) and it is found that the singularities play an important role in the nature of the chaos. Moreover both types of defects become coupled at the onset of turbulence....

Slab analogy in theory and practice of conforming equilibrium stress models for finite element analysis of plane elastostatics

Miroslav Vondrák (1985)

Aplikace matematiky

The fundamental problem in the application of the principle of complementary energy is the construction of suitable subsets that approximate the set of all statically admissible fields satisfying both the conditions of equilibrium inside the body and the static boundary conditions. The notion “slab analogy” is motivated and the interface conditions for the Airy stress function are established at the contact of two domains. Some spaces of types of conforming equilibrium stress elements, which can...

Small amplitude homogenization applied to models of non-periodic fibrous materials

David Manceau (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we compare a biomechanics empirical model of the heart fibrous structure to two models obtained by a non-periodic homogenization process. To this end, the two homogenized models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic elastic materials is also derived and allows us to obtain a third simplified model.

Small vertical vibrations of strings with moving ends.

Tania Nunes Rabello, María Cristina Campos Vieira, Cicero Lopes Frota, Luis Adauto Medeiros (2003)

Revista Matemática Complutense

In this work we investigate a mathematical model for small vertical vibrations of a stretched string when the ends vary with the time t and the cross sections of the string is variable and the density of the material is also variable, that is, p=p(x). It contains Kirchhoff model for fixed ends. We obtain solutions by Galerkin method and estimates in Sobolev spaces.

Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid

Olivier Glass, Franck Sueur, Takéo Takahashi (2012)

Annales scientifiques de l'École Normale Supérieure

We consider the motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain. For such a system the Cauchy problem is well-posed locally in time if the initial velocity of the fluid is in the Hölder space C 1 , r . In this paper we prove that the smoothness of the motion of the rigid body may be only limited by the smoothness of the boundaries (of the body and of the domain). In particular for analytic boundaries the motion of the rigid body is analytic...

Solution of Fredholm integrodifferential equation for an infinite elastic plate

Alaa A. El-Bary (2004)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Many authors discussed the problem of an elastic infinite plate with a curvilinear hole, some of them considered this problem in z-plane and the others in the s-plane. They obtained an exact expression for Goursat's functions for the first and second fundamental problem. In this paper, we use the Cauchy integral method to obtain a solution to the first and second fundamental problem by using a new transformation. Some applications are investigated and also some special cases are discussed.

Solution of mechanical problems in fractured rock with the user-defined interface of COMSOL multiphysics

Škarydová, Ilona, Hokr, Milan (2015)

Programs and Algorithms of Numerical Mathematics

This paper presents the main concept and several key features of the user-defined interface of COMSOL Java API for the solution of mechanical problems in fractured rock. This commercial computational system based on FEM has yet to incorporate fractures in mechanical problems. Our aim is to solve a 2D mechanical problem with a fracture which is defined separately from finite-element discretization and the fracture properties are included through the constitutive laws. This will be performed based...

Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method

Jindřich Nečas, Ivan Hlaváček (1983)

Aplikace matematiky

A problem of unilateral contact between an elasto-plastic body and a rigid frictionless foundation is solved within the range of the so called deformation theory of plasticity. The weak solution is defined by means of a variational inequality. Then the so called secant module (Kačanov's) iterative method is introduced, each step of which corresponds to a Signorini's problem of elastoplastics. The convergence of the method is proved on an abstract level.

Solutions faibles pour des problèmes d’interaction fluide-structure

Benoît Desjardins, Maria J. Esteban (1999/2000)

Séminaire Équations aux dérivées partielles

Nous présentons dans cette note une nouvelle façon d’aborder les questions d’existence de solutions faibles pour certains problèmes d’interaction fluide-structure. Dans l’état actuel, cette approche permet de traiter le cas de solides rigides ou très faiblement déformables, immergés dans un fluide visqueux incompressible ou dans un fluide visqueux compressible dont l’évolution est isentropique.

Currently displaying 41 – 60 of 218