Displaying 61 – 80 of 131

Showing per page

Contact between elastic bodies. II. Finite element analysis

Jaroslav Haslinger, Ivan Hlaváček (1981)

Aplikace matematiky

The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone.

Contact between elastic bodies. III. Dual finite element analysis

Jaroslav Haslinger, Ivan Hlaváček (1981)

Aplikace matematiky

The problem of a unilateral contact between elastic bodies with an apriori bounded contact zone is formulated in terms of stresses via the principle of complementary energy. Approximations are defined by means of self-equilibriated triangular block-elements and an L 2 -error estimate is proven provided the exact solution is regular enough.

Contact between elastic perfectly plastic bodies

Jaroslav Haslinger, Ivan Hlaváček (1982)

Aplikace matematiky

If the material of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation in terms of stresses is more suitable than that in displacements. The Haar-Kármán principle is first extended to the case of a unilateral contact between two bodies without friction. Approximations are proposed by means of piecewise constant triangular finite elements. Convergence of the method is proved for any regular family of triangulations.

Contact problem of two elastic bodies. I

Vladimír Janovský, Petr Procházka (1980)

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Contact problem of two elastic bodies. II

Vladimír Janovský, Petr Procházka (1980)

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Contact problem of two elastic bodies. III

Vladimír Janovský, Petr Procházka (1980)

Aplikace matematiky

The goal of the paper is the study of the contact problem of two elastic bodies which is applicable to the solution of displacements and stresses of the earth continuum and the tunnel wall. In this first part the variational formulation of the continuous and discrete model is stated. The second part covers the proof of convergence of finite element method to the solution of continuous problem while in the third part some practical applications are illustrated.

Contact shape optimization based on the reciprocal variational formulation

Jaroslav Haslinger (1999)

Applications of Mathematics

The paper deals with a class of optimal shape design problems for elastic bodies unilaterally supported by a rigid foundation. Cost and constraint functionals defining the problem depend on contact stresses, i.e. their control is of primal interest. To this end, the so-called reciprocal variational formulation of contact problems making it possible to approximate directly the contact stresses is used. The existence and approximation results are established. The sensitivity analysis is carried out....

Continuity of hysteresis operators in Sobolev spaces

Pavel Krejčí, Vladimír Lovicar (1990)

Aplikace matematiky

We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators are continuous in Sobolev spaces W 1 , p ( 0 , T ) for 1 p < + , (localy) Lipschitz continuous in W 1 , 1 ( 0 , T ) and discontinuous in W 1 , ( 0 , T ) for arbitrary T > 0 . Examples show that this result is optimal.

Control in obstacle-pseudoplate problems with friction on the boundary. optimal design and problems with uncertain data

Ivan Hlaváček, Ján Lovíšek (2001)

Applicationes Mathematicae

Four optimal design problems and a weight minimization problem are considered for elastic plates with small bending rigidity, resting on a unilateral elastic foundation, with inner rigid obstacles and a friction condition on a part of the boundary. The state problem is represented by a variational inequality and the design variables influence both the coefficients and the set of admissible state functions. If some input data are allowed to be uncertain a new method of reliable solutions is employed....

Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems

Ivan Hlaváček, Ján Lovíšek (2002)

Applicationes Mathematicae

In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.

Control of a clamped-free beam by a piezoelectric actuator

Emmanuelle Crépeau, Christophe Prieur (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a controllability problem for a beam, clamped at one boundary and free at the other boundary, with an attached piezoelectric actuator. By Hilbert Uniqueness Method (HUM) and new results on diophantine approximations, we prove that the space of exactly initial controllable data depends on the location of the actuator. We also illustrate these results with numerical simulations.

Currently displaying 61 – 80 of 131