The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1141 –
1160 of
2633
A linearly convergent iterative algorithm that approximates the
rank-1 convex envelope of a given function ,
i.e. the largest function below f which is convex along all rank-1 lines, is
established. The proposed algorithm is a modified version of an approximation
scheme due to Dolzmann and Walkington.
The subject of this paper is the rigorous derivation of reduced models for a thin plate by means of Γ-convergence, in the framework of finite plasticity. Denoting by ε the thickness of the plate, we analyse the case where the scaling factor of the elasto-plastic energy per unit volume is of order ε2α−2, with α ≥ 3. According to the value of α, partially or fully linearized models are deduced, which correspond, in the absence of plastic deformation, to the Von Kármán plate theory and the linearized...
We provide a rigorous justification of the classical linearization approach in plasticity. By taking the small-deformations limit, we prove via -convergence for rate-independent processes that energetic solutions of the quasi-static finite-strain elastoplasticity system converge to the unique strong solution of linearized elastoplasticity.
We consider a class of two-dimensional Ginzburg-Landau problems which are characterized by energy density concentrations on a one-dimensional set. In this paper, we investigate the states of vanishing energy. We classify these zero-energy states in the whole space: They are either constant or a vortex. A bounded domain can sustain a zero-energy state only if the domain is a disk and the state a vortex. Our proof is based on specific entropies which lead to a kinetic formulation, and on a careful...
A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.
We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to the reference...
The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of
truncated vectorial series, for path following problems [2]. In this paper, we present and
discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give
some numerical comparisons of pseudo arc-length parameterization and local
parameterization on non-linear elastic shells problems
In this work we study the problem of the existence of bifurcation in the solution set of the equation F(x, λ)=0, where F: X×R k →Y is a C 2-smooth operator, X and Y are Banach spaces such that X⊂Y. Moreover, there is given a scalar product 〈·,·〉: Y×Y→R 1 that is continuous with respect to the norms in X and Y. We show that under some conditions there is bifurcation at a point (0, λ0)∈X×R k and we describe the solution set of the studied equation in a small neighbourhood of this point.
It is proved that the first eigenfunction of the mixed boundary-value problem for the Laplacian in a thin domain is localized either at the whole lateral surface of the domain, or at a point of , while the eigenfunction decays exponentially inside . Other effects, attributed to the high-frequency range of the spectrum, are discussed for eigenfunctions of the mixed boundary-value and Neumann problems, too.
The present paper proposes and analyzes a general locking free mixed strategy for computing the deformation of incompressible three dimensional structures placed inside
flexible membranes. The model involves as in
Chapelle and Ferent [Math. Models Methods Appl. Sci.13 (2003) 573–595]
a bending dominated shell envelope and a quasi incompressible elastic body.
The present work extends an earlier work of
Arnold and Brezzi [Math Comp.66 (1997) 1–14]
treating the shell part and proposes
a global...
We consider mixed and hybrid variational formulations to the linearized
elasticity system in domains with cracks. Inequality type conditions are
prescribed at the crack faces which results in unilateral contact problems. The
variational formulations are extended to the whole domain including the cracks
which yields, for each problem, a smooth domain formulation. Mixed
finite element methods such as PEERS or BDM methods are designed to avoid
locking for nearly incompressible materials in plane elasticity....
This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...
This paper is devoted to the study of a coupled system which consists of
a wave equation and a heat equation coupled through a transmission condition
along a steady interface. This system is a linearized model for
fluid-structure interaction introduced by Rauch, Zhang and Zuazua
for a simple transmission condition and by Zhang and Zuazua for a
natural transmission condition.
Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we
complete the results obtained...
Currently displaying 1141 –
1160 of
2633