The search session has expired. Please query the service again.
Displaying 1261 –
1280 of
2633
In this paper, we discuss advanced
thermostatting techniques for sampling molecular systems in the canonical ensemble.
We first survey work on dynamical thermostatting methods, including the Nosé-Poincaré method, and generalized bath methods which introduce a more complicated extended model to obtain better ergodicity. We describe a general controlled temperature model, projective thermostatting molecular dynamics
(PTMD) and demonstrate that it flexibly accommodates existing alternative
thermostatting...
This paper is devoted to several applications of morphological analysis applied to the bounding of the overall behaviour of composite materials. In particular we focus our attention to the generalization of the Hashin-Shtrikmann variational principles to thermoelasticity.
Modern physics theories claim that the dynamics of interfaces between
the two-phase is described by the evolution equations involving the
curvature and various kinematic energies. We consider the motion of
spiral-shaped polygonal curves by its crystalline curvature, which
deserves a mathematical model of real crystals. Exploiting the
comparison principle, we show the local existence and uniqueness of the
solution.
We consider a motion of spiral-shaped piecewise linear curves governed by a crystalline curvature flow with a driving force and a tip motion which is a simple model of a step motion of a crystal surface. We extend our previous result on global existence of a spiral-shaped solution to a linear crystalline motion for a power type nonlinear crystalline motion with a given rotating tip motion. We show that self-intersection of the solution curves never occurs and also show that facet extinction never...
We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves jump...
The integral constitutive equations of a multipolar viscoelastic material are analyzed from the thermodynamic point of view. They are shown to be approximated by those of the differential-type viscous materials when the processes are slow. As a consequence of the thermodynamic compatibility of the viscoelastic model, the coefficients of viscosity of the approximate viscous model are shown to have an Onsager-type symmetry. This symmetry was employed earlier in the proof of the existence of solutions...
This paper is a survey of articles [5, 6, 8, 9, 13, 17, 18]. We are interested in the influence of small geometrical perturbations on the solution of elliptic problems. The cases of a single inclusion or several well-separated inclusions have been deeply studied. We recall here techniques to construct an asymptotic expansion. Then we consider moderately close inclusions, i.e. the distance between the inclusions tends to zero more slowly than their characteristic size. We provide a complete asymptotic...
We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction...
Currently displaying 1261 –
1280 of
2633