The search session has expired. Please query the service again.
Displaying 1561 –
1580 of
2633
A quasilinear noncoupled thermoelastic system is studied both on a threedimensional bounded domain with a smooth boundary and for a generalized model involving the influence of supports. Sufficient conditions are derived under which the stresses are bounded and continuous on the closure of the domain.
In this part we weaken the sufficient condition to obtain the stresses continuous and bounded in the threedimensional case, and we treat a certain coupled system.
The continuity and boundedness of the stress to the solution of the thermoelastic system is studied first for the linear case on a strip and then for the twodimensional model involving nonlinearities, noncontinuous heating regimes and isolated boundary nonsmoothnesses of the heated body.
We consider the question raised in [1] of whether relaxed energy
densities involving both bulk and surface energies
can be written as a sum of two functions, one depending on the net gradient
of admissible functions, and the other on net
singular part.
We show that, in general, they cannot. In particular, if the bulk density
is quasiconvex but not convex, there
exists a convex and homogeneous of degree 1 function of the jump such that
there is no such representation.
In these notes we give some examples of the interaction of mathematics with experiments and numerical simulations on the search for singularities.
The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary of a polygonal domain is given. The rate of convergence is proved if the exact solution is sufficiently regular.
In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably...
A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.
A mathematical model of the equilibrium problem of elastic sandwich plates is established. Using the theory of inequalities of Korn's type for a general class of elliptic systems the existence and uniqueness of a variational solution is proved.
In the present paper the convergence of the finite element method to the solution of the problem of a plate with ribs which are stiff against torsion in the sense of Vlasov is studied. According to the conclusions of a paper by the author and J. Haslinger it suffices to prove a density theorem (Theorem 2.1).
In 1964, Green and Rivlin [1, 2] proposed two non-standard theories of continua. Both papers concerned non-simple materials: the first considered deformation gradients of higher order than the first as dependent variables; and the second, which generalised the first, treated materials whose kinematic state was not completely detemined by the deformation function, but was also dependent upon some multipolar deformation functions. In both theories the existence of higher order stresses is fundamental.In...
We consider the coupling between three-dimensional
(3D) and one-dimensional (1D) fluid-structure interaction
(FSI) models describing blood flow inside compliant vessels.
The 1D model is a hyperbolic
system of partial differential equations.
The 3D model consists of the Navier-Stokes equations
for incompressible Newtonian fluids coupled with
a model for the vessel wall dynamics. A non standard formulation
for the Navier-Stokes equations is adopted to
have suitable boundary conditions for the...
Currently displaying 1561 –
1580 of
2633