The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1801 – 1820 of 2633

Showing per page

Seismic inversion for a crak opening

Michele Caputo, Rodolfo Console (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The displacement field caused by the classic earthquake mechanism model consisting of a slip along the fault is extended to the case when besides the slip, also an opening occurs caused by tensional forces. The tensor matrix describing the moment tensor does not necessarily have a nil trace. The direct problem is solved finding the radiation pattern for P and S waves. A method to solve the inverse problem of the determination of the four parameters describing the source is presented and tested on...

Selfadjoint Extensions for the Elasticity System in Shape Optimization

Serguei A. Nazarov, Jan Sokołowski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Two approaches are proposed to modelling of topological variations in elastic solids. The first approach is based on the theory of selfadjoint extensions of differential operators. In the second approach function spaces with separated asymptotics and point asymptotic conditions are introduced, and a variational formulation is established. For both approaches, accuracy estimates are derived.

Self-similarly expanding networks to curve shortening flow

Oliver C. Schnürer, Felix Schulze (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a network in the Euclidean plane that consists of three distinct half-lines with common start points. From that network as initial condition, there exists a network that consists of three curves that all start at one point, where they form 120 degree angles, and expands homothetically under curve shortening flow. We also prove uniqueness of these networks.

Semicontinuity theorem in the micropolar elasticity

Josip Tambača, Igor Velčić (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we investigate the equivalence of the sequential weak lower semicontinuity of the total energy functional and the quasiconvexity of the stored energy function of the nonlinear micropolar elasticity. Based on techniques of Acerbi and Fusco [Arch. Rational Mech. Anal.86 (1984) 125–145] we extend the result from Tambača and Velčić [ESAIM: COCV (2008) DOI: 10.1051/cocv:2008065] for energies that satisfy the growth of order p≥ 1. This result is the main step towards the general existence...

Sensitivity analysis of a nonlinear obstacle plate problem

Isabel N. Figueiredo, Carlos F. Leal (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results of [9, 10] for the linear case, is done by application of an abstract variational result [6], where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the proto-derivative. We prove that...

Sensitivity Analysis of a Nonlinear Obstacle Plate Problem

Isabel N. Figueiredo, Carlos F. Leal (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results of [9,10] for the linear case, is done by application of an abstract variational result [6], where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the proto-derivative. We prove that...

Shakedown theorems in poroplastic dynamics

Giuseppe Cocchetti, Giulio Maier (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The constitutive model assumed in this Note is poroplastic two-phase (solid-fluid) with full saturation and stable in Drucker’s sense. A solid or structure of this material is considered, subjected to dynamic external actions, in particular periodic or intermittent, in a small deformation regime. A sufficient condition and a necessary one are established, by a «static» approach, for shakedown (or adaptation), namely for boundedness in time of the cumulative dissipated energy.

Shape and topological sensitivity analysis in domains with cracks

Alexander Khludnev, Jan Sokołowski, Katarzyna Szulc (2010)

Applications of Mathematics

The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural...

Shape and topology optimization of the robust compliance via the level set method

François Jouve, Grégoire Allaire, Frédéric de Gournay (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to compute it....

Shape and topology optimization of the robust compliance via the level set method

Frédéric de Gournay, Grégoire Allaire, François Jouve (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to compute...

Shape optimization for dynamic contact problems

Andrzej Myśliński (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The paper deals with shape optimization of dynamic contact problem with Coulomb friction for viscoelastic bodies. The mass nonpenetrability condition is formulated in velocities. The friction coefficient is assumed to be bounded. Using material derivative method as well as the results concerning the regularity of solution to dynamic variational inequality the directional derivative of the cost functional is calculated and the necessary optimality condition is formulated.

Shape optimization in contact problems based on penalization of the state inequality

Jaroslav Haslinger, Pekka Neittaanmäki, Timo Tiihonen (1986)

Aplikace matematiky

The paper deals with the approximation of optimal shape of elastic bodies, unilaterally supported by a rigid, frictionless foundation. Original state inequality, describing the behaviour of such a body is replaced by a family of penalized state problems. The relation between optimal shapes for the original state inequality and those for penalized state equations is established.

Shape optimization of an elasto-perfectly plastic body

Ivan Hlaváček (1987)

Aplikace matematiky

Within the range of Prandtl-Reuss model of elasto-plasticity the following optimal design problem is solved. Given body forces and surface tractions, a part of the boundary, where the (two-dimensional) body is fixed, is to be found, so as to minimize an integral of the squared yield function. The state problem is formulated in terms of stresses by means of a time-dependent variational inequality. For approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant...

Shape optimization of an elasto-plastic body for the model with strain- hardening

Vladislav Pištora (1990)

Aplikace matematiky

The state problem of elasto-plasticity (for the model with strain-hardening) is formulated in terms of stresses and hardening parameters by means of a time-dependent variational inequality. The optimal design problem is to find the shape of a part of the boundary such that a given cost functional is minimized. For the approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant triangular elements for the stress and the hardening parameter, and backward differences...

Currently displaying 1801 – 1820 of 2633