The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
327
This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient discretization....
This paper presents the numerical analysis for a
variational formulation of rate-independent phase transformations
in elastic solids due to Mielke et al. The new model itself
suggests an implicit time-discretization which is combined with the
finite element method in space.
A priori error estimates are established for the
quasioptimal spatial approximation of the stress field
within one time-step. A posteriori
error estimates motivate an
adaptive mesh-refining algorithm for efficient...
This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc:= . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD)...
This paper is concerned with the dual formulation of the interface problem
consisting of a linear partial differential equation with variable coefficients
in some bounded Lipschitz domain Ω in (n ≥ 2)
and the Laplace equation with some radiation condition in the
unbounded exterior domain Ωc := .
The two problems are coupled by transmission and
Signorini contact conditions on the interface Γ = ∂Ω.
The exterior part of the
interface problem is rewritten using a Neumann to Dirichlet mapping...
A new class of history-dependent quasivariational inequalities was recently studied in [M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471–491]. Existence, uniqueness and regularity results were proved and used in the study of several mathematical models which describe the contact between a deformable body and an obstacle. The aim of this paper is to provide numerical analysis of the quasivariational inequalities...
In this work, the quasistatic thermoviscoelastic thermistor problem is
considered. The thermistor model describes the combination of the effects due to
the heat, electrical current conduction and Joule's heat generation. The variational
formulation leads to a coupled system of nonlinear variational equations for which
the existence of a weak solution is recalled.
Then, a fully discrete algorithm is introduced based on the finite element
method to approximate the spatial variable and an Euler scheme...
A conceptual numerical strategy for rate-independent processes in the
energetic formulation is proposed and its convergence is proved under various
rather mild data qualifications. The novelty is that we obtain convergence of
subsequences of space-time discretizations even in case where the limit
problem does not have a unique solution and we need no
additional assumptions on higher regularity of the limit solution.
The variety of general perspectives thus
obtained is illustrated on several...
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
The analysis of dynamic contacts/impacts of several deformable bodies belongs to both theoretically and computationally complicated problems, because of the presence of unpleasant nonlinearities and of the need of effective contact detection. This paper sketches how such difficulties can be overcome, at least for a model problem with several elastic bodies, using i) the explicit time-discretization scheme and ii) the finite element technique adopted to contact evaluations together with iii) the...
Computational modelling of contact problems is still one of the most difficult aspects of non-linear analysis in engineering mechanics. The article introduces an original efficient explicit algorithm for evaluation of impacts of bodies, satisfying the conservation of both momentum and energy exactly. The algorithm is described in its linearized 2-dimensional formulation in details, as open to numerous generalizations including 3-dimensional ones, and supplied by numerical examples obtained from...
Second order elliptic systems with Dirichlet boundary conditions are solved by means of affine finite elements on regular uniform triangulations. A simple averagign scheme is proposed, which implies a superconvergence of the gradient. For domains with enough smooth boundary, a global estimate is proved in the -norm. For a class of polygonal domains the global estimate can be proven.
A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton’s or Neumann’s type. For bounded plane domains with smooth boundary the local -superconvergence of the derivatives in the -norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet’s boundary conditions is treated.
Second order elliptic systems with boundary conditions of Dirichlet, Neumann’s or Newton’s type are solved by means of linear finite elements on regular uniform triangulations. Error estimates of the optimal order are proved for the averaged gradient on any fixed interior subdomain, provided the problem under consideration is regular in a certain sense.
In the paper the Signorini problem without friction in the linear thermoelasticity for the steady-state case is investigated. The problem discussed is the model geodynamical problem, physical analysis of which is based on the plate tectonic hypothesis and the theory of thermoelasticity.
The existence and unicity of the solution of the Signorini problem without friction for the steady-state case in the linear thermoelasticity as well as its finite element approximation is proved. It is known that...
The paper deals with existence and uniqueness results and with the numerical solution of the nonsmooth variational problem describing a deflection of a thin annular plate with Neumann boundary conditions. Various types of the subsoil and the obstacle which influence the plate deformation are considered. Numerical experiments compare two different algorithms.
Currently displaying 201 –
220 of
327