The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 2121 –
2140 of
3487
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in...
We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize
the shallow water problem in height-flow rate formulation used to
solve the flow in lakes and perfectly well-mixed sea. We establish
a convergence result for the time-discretized problem when the
momentum equation and the continuity equation are solved with the
Galerkin method, without adding a penalization term in the
continuity equation as it is made in Lions...
We study the flow of a compressible, stationary and irrotational fluid with wake, in a channel, around a convex symmetric profile, with assigned velocity q-infinity at infinity and q-s < q-infinity at the wake. In particular, we study the regularity of the free boundary (for a problem which has non-constant coefficients), in the hodograph plane.
This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...
This paper is concerned with the numerical approximations of Cauchy problems for
one-dimensional nonconservative hyperbolic systems.
The first goal is to introduce a general concept of well-balancing
for numerical schemes solving this kind of systems. Once this concept stated, we
investigate the well-balance properties of numerical schemes based on the
generalized Roe linearizations introduced by [Toumi, J. Comp. Phys.102 (1992) 360–373]. Next, this general theory
is applied to obtain well-balanced...
It was conjectured in [1] that there is at most one bounded channel flow for a viscoelastic fluid whose stress relaxation function is positive, integrable, and strictly convex. In this paper we prove the uniqueness of bounded channel flows, assuming to be non-negative, integrable, and convex, but different from a very specific piecewise linear function. Furthermore, whenever these hypotheses apply, the unbounded channel flows, if any, must grow in time faster than any polynomial.
Viscous two-fluid flows arise in different kinds of coating technologies. Frequently, the corresponding mathematical models represent two-dimensional free boundary value problems for the Navier-Stokes equations or their modifications. In this review article we present some results about nonisothermal stationary as well as about isothermal evolutionary viscous flow problems. The temperature-depending problems are characterized by coupled heat- and mass transfer and also by thermocapillary convection....
Currently displaying 2121 –
2140 of
3487