The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a strongly nonlinear internal energy balance equation, governing the evolution of the absolute temperature , an evolution equation for the phase change parameter , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable . The main novelty of the model...
We prove global dynamical stability of steady transonic shock solutions in divergent quasi-one-dimensional nozzles. One of the key improvements compared with previous results is that we assume neither the smallness of the slope of the nozzle nor the weakness of the shock strength. A key ingredient of the proof are the derivation a exponentially decaying energy estimates for a linearized problem.
We prove the global in time existence of a small solution for the 3D micropolar fluid system in critical Fourier-Herz spaces by using the Fourier localization method and Littlewood-Paley theory.
Global existence of regular solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe with large inflow and outflow is shown. Global existence is proved in two steps. First, by the Leray-Schauder fixed point theorem we prove local existence with large existence time. Next, the local solution is prolonged step by step. The existence is proved without any restrictions on the magnitudes of the inflow, outflow, external force and initial...
The existence and uniqueness of solutions to the Navier-Stokes equations in a cylinder Ω and with boundary slip conditions is proved. Assuming that the azimuthal derivative of cylindrical coordinates and azimuthal coordinate of the initial velocity and the external force are sufficiently small we prove long time existence of regular solutions such that the velocity belongs to and the gradient of the pressure to . We prove the existence of solutions without any restrictions on the lengths of the...
This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.
We study the Cauchy problem for the 3D MHD system with damping terms and (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.
The paper contains the proof of global existence of weak solutions of the viscous compressible barotropic gas for the initial-boundary value problem in a finite channel.
The paper contains the proof of global existence of weak solutions viscous compressible isothermal bipolar fluid of initial boundary value in a finite channel.
We prove small data global existence and scattering for quasilinear systems of Klein-Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.
In this note we present a proof of existence of global in time regular (unique) solutions to the Navier-Stokes equations in an arbitrary three dimensional domain with a general boundary condition. The only restriction is that the L₂-norm of the initial datum is required to be sufficiently small. The magnitude of the rest of the norm is not restricted. Our considerations show the essential role played by the energy bound in proving global in time results for the Navier-Stokes equations.
Currently displaying 41 –
60 of
86