Displaying 721 – 740 of 3470

Showing per page

Czech-Japanese Seminar in Applied Mathematics 2008

Michal Beneš, Petr Knobloch, Tohru Tsujikawa, Shigetoshi Yazaki (2009)

Kybernetika

The Special Issue of Kybernetika is devoted to the publication of selected peer-reviewed articles submitted by the participants of the Czech-Japanese Seminar in Applied Mathematics 2008 which took place on September 1-7, 2008 in Takachi-ho and Miyazaki, Japan. The Czech-Japanese Seminar in Applied Mathematics 2008 was organized by the Department of Applied Physics, Faculty of Engineering, University of Miyazaki. It was the fourth meeting in the series of the Czech-Japanese Seminars in Applied Mathematics....

Dense Granular Poiseuille Flow

E. Khain (2011)

Mathematical Modelling of Natural Phenomena

We consider a dense granular shear flow in a two-dimensional system. Granular systems (composed of a large number of macroscopic particles) are far from equilibrium due to inelastic collisions between particles: an external driving is needed to maintain the motion of particles. Theoretical description of driven granular media is especially challenging for dense granular flows. This paper focuses on a gravity-driven dense granular Poiseuille flow...

Density-dependent incompressible fluids with non-Newtonian viscosity

F. Guillén-González (2004)

Czechoslovak Mathematical Journal

We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of p -coercivity and ( p - 1 ) -growth, for a given parameter p > 1 . The existence of Dirichlet weak solutions was obtained in [2], in the cases p 12 / 5 if d = 3 or p 2 if d = 2 , d being the dimension of the domain. In this paper, with help of some new estimates (which lead...

Derivation and mathematical analysis of a nonlocal model for large amplitude internal waves

David Lannes (2008/2009)

Séminaire Équations aux dérivées partielles

This note is devoted to the study of a bi-fluid generalization of the nonlinear shallow-water equations. It describes the evolution of the interface between two fluids of different densities. In the case of a two-dimensional interface, this systems contains unexpected nonlocal terms (that are of course not present in the usual one-fluid shallow water equations). We show here how to derive this systems from the two-fluid Euler equations and then show that it is locally well-posed.

Currently displaying 721 – 740 of 3470