The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An overview of recent results pertaining to the hydrodynamic description (both Newtonian
and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic
Maxwell models is presented. The use of this mathematical model allows us to get exact
results for different problems. First, the Navier–Stokes constitutive equations with
explicit expressions for the corresponding transport coefficients are derived by applying
the Chapman–Enskog...
The hydromagnetic stability of stratified shear flows in the presence of cross flows is discussed. The magnetic field is applied in the direction of the main flow. Some necessary conditions of instability, the growth rate of unstable modes and reduction of the unstable region are discussed.
In this work we describe an efficient model for the simulation of a
two-phase flow made of a gas and a granular solid. The starting point is the two-velocity
two-pressure model of Baer and Nunziato
[Int. J. Multiph. Flow16 (1986) 861–889].
The model is supplemented by
a relaxation source term in order
to take into account the pressure equilibrium between the two phases and
the granular stress in the solid phase. We show that the relaxation
process can be made thermodynamically coherent with an...
Currently displaying 61 –
67 of
67