Displaying 961 – 980 of 3470

Showing per page

Existence results for the flow of viscoelastic fluids of White-Metzner type.

A. Hakim (1994)

Extracta Mathematicae

This work is concerned with the study of the flow of an incompressible viscoelastic fluid of White-Metzner type. These models lead to systems of partial differential equations that are evolutionary, are globally well posed. The objective of this article is to prove the local and global existence of solutions of these systems.

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in n

Reinhard Farwig, Hermann Sohr (2009)

Czechoslovak Mathematical Journal

For a bounded domain Ω n , n 3 , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system - Δ u + u · u + p = f , div u = k , u | Ω = g with u L q , q n , and very general data classes for f , k , g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of...

Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials.

Céline Baranger, Clément Mouhot (2005)

Revista Matemática Iberoamericana

This paper deals with explicit spectral gap estimates for the linearized Boltzmann operator with hard potentials (and hard spheres). We prove that it can be reduced to the Maxwellian case, for which explicit estimates are already known. Such a method is constructive, does not rely on Weyl's Theorem and thus does not require Grad's splitting. The more physical idea of the proof is to use geometrical properties of the whole collision operator. In a second part, we use the fact that the Landau operator...

Exponential convergence to the stationary measure and hyperbolicity of the minimisers for random Lagrangian Systems

Boritchev, Alexandre (2017)

Proceedings of Equadiff 14

We consider a class of 1d Lagrangian systems with random forcing in the spaceperiodic setting: φ t + φ x 2 / 2 = F ω , x S 1 = / . These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9, 11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the exponential convergence to the stationary measure [6]. This is the first such result in a classical setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space L p for finite p , partially answering...

Extension of a regularity result concerning the dam problem

Gianni Gilardi, Stephan Luckhaus (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

One proves, in the case of piecewise smooth coefficients, that the time derivative of the solution of the so called dam problem is a measure, extending the result proved by the same authors in the case of Lipschitz continuous coefficients.

Extension of ALE methodology to unstructured conical meshes

Benjamin Boutin, Erwan Deriaz, Philippe Hoch, Pierre Navaro (2011)

ESAIM: Proceedings

We propose a bi-dimensional finite volume extension of a continuous ALE method on unstructured cells whose edges are parameterized by rational quadratic Bezier curves. For each edge, the control point possess a weight that permits to represent any conic (see for example [LIGACH]) and thanks to [WAGUSEDE,WAGU], we are able to compute the exact area of our cells. We then give an extension of scheme for remapping step based on volume fluxing [MARSHA]...

Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists

P. E. Vincent, A. Jameson (2011)

Mathematical Modelling of Natural Phenomena

Theoretical studies and numerical experiments suggest that unstructured high-order methods can provide solutions to otherwise intractable fluid flow problems within complex geometries. However, it remains the case that existing high-order schemes are generally less robust and more complex to implement than their low-order counterparts. These issues, in conjunction with difficulties generating high-order meshes, have limited the adoption of high-order...

Currently displaying 961 – 980 of 3470