Previous Page 6

Displaying 101 – 105 of 105

Showing per page

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order...

Fundamental solutions and asymptotic behaviour for the p-Laplacian equation.

Soshana Kamin, Juan Luis Vázquez (1988)

Revista Matemática Iberoamericana

We establish the uniqueness of fundamental solutions to the p-Laplacian equationut = div (|Du|p-2 Du),   p > 2,defined for x ∈ RN, 0 < t < T. We derive from this result the asymptotic behavoir of nonnegative solutions with finite mass, i.e., such that u(*,t) ∈ L1(RN). Our methods also apply to the porous medium equationut = ∆(um),   m > 1,giving new and simpler proofs of known results. We finally introduce yet another method of proving asymptotic results based on the...

Currently displaying 101 – 105 of 105

Previous Page 6