The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
105 of
105
We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic.
We present a fully adaptive multiresolution scheme for spatially
one-dimensional quasilinear strongly degenerate parabolic equations
with zero-flux and periodic boundary conditions. The numerical scheme
is based on a finite volume discretization using the Engquist-Osher
numerical flux and explicit time stepping. An adaptive multiresolution
scheme based on cell averages is then used to speed up the CPU time and
the memory requirements of the underlying finite volume scheme, whose
first-order...
We establish the uniqueness of fundamental solutions to the p-Laplacian equationut = div (|Du|p-2 Du), p > 2,defined for x ∈ RN, 0 < t < T. We derive from this result the asymptotic behavoir of nonnegative solutions with finite mass, i.e., such that u(*,t) ∈ L1(RN). Our methods also apply to the porous medium equationut = ∆(um), m > 1,giving new and simpler proofs of known results. We finally introduce yet another method of proving asymptotic results based on the...
Currently displaying 101 –
105 of
105