Displaying 1561 – 1580 of 3470

Showing per page

Multimodels for incompressible flows : iterative solutions for the Navier-Stokes / Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem

Aihui Zhou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a multi-parameter error resolution technique is applied into a mixed finite element method for the Stokes problem. By using this technique and establishing a multi-parameter asymptotic error expansion for the mixed finite element method, an approximation of higher accuracy is obtained by multi-processor computers in parallel.

Multiple spatial scales in engineering and atmospheric low Mach number flows

Rupert Klein (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of this...

Multiple spatial scales in engineering and atmospheric low Mach number flows

Rupert Klein (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The first part of this paper reviews the single time scale/multiple length scale low Mach number asymptotic analysis by Klein (1995, 2004). This theory explicitly reveals the interaction of small scale, quasi-incompressible variable density flows with long wave linear acoustic modes through baroclinic vorticity generation and asymptotic accumulation of large scale energy fluxes. The theory is motivated by examples from thermoacoustics and combustion. In an almost obvious way specializations of...

Multipolar viscoelastic materials and the symmetry of the coefficients of viscosity

Miroslav Šilhavý (1992)

Applications of Mathematics

The integral constitutive equations of a multipolar viscoelastic material are analyzed from the thermodynamic point of view. They are shown to be approximated by those of the differential-type viscous materials when the processes are slow. As a consequence of the thermodynamic compatibility of the viscoelastic model, the coefficients of viscosity of the approximate viscous model are shown to have an Onsager-type symmetry. This symmetry was employed earlier in the proof of the existence of solutions...

Multiscale stochastic homogenization of convection-diffusion equations

Nils Svanstedt (2008)

Applications of Mathematics

Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form u ε ω / t + 1 / ϵ 3 𝒞 T 3 ( x / ε 3 ) ω 3 · u ε ω - div α T 1 ( x / ε 1 ) ω 1 , T 2 ( x / ε 2 ) ω 2 , t u ε ω = f . It is shown, under certain structure assumptions on the random vector field 𝒞 ( ω 3 ) and the random map α ( ω 1 , ω 2 , t ) , that the sequence { u ϵ ω } of solutions converges in the sense of G-convergence of parabolic operators to the solution u of the homogenized problem u / t - div ( ( t ) u ) = f .

Navier-Stokes equations on unbounded domains with rough initial data

Peer Christian Kunstmann (2010)

Czechoslovak Mathematical Journal

We consider the Navier-Stokes equations in unbounded domains Ω n of uniform C 1 , 1 -type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded H -calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.

Currently displaying 1561 – 1580 of 3470