Resonance theory of two-body Schrödinger operators
We consider the 3D Schrödinger operator where , is a magnetic potential generating a constant magneticfield of strength , and is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of admits a meromorphic extension from the upper half plane to an appropriate Riemann surface , and define the resonances of as the poles of this meromorphic extension. We study their distribution near any fixed...
Nous étudions les résonances de Rayleigh créées par un obstacle strictement convexe à bord analytique en dimension 2. Nous montrons qu’il existe exactement deux suites de résonances et convergeant exponentiellement vite vers l’axe réel dans un voisinage polynomial de l’axe réel, et exponentiellement proches d’une suite de quasimodes réels. De plus, est un symbole analytique d’ordre 0 en la variable dont on donne le premier terme du développement. Nous construisons pour cela des quasimodes...
Dans cet exposé, on décrit un travail effectué sous la direction de J. Sjöstrand. On prouve des majorations et des minorations du nombre de résonances d’un opérateur de Schrödinger semi-classique dans des petits disques centrés en , une valeur critique de .
We give a necessary and sufficient criterion for a normal CP-map on a von Neumann algebra to admit a restriction to a maximal commutative subalgebra. We apply this result to give a far reaching generalization of Rebolledo's sufficient criterion for the Lindblad generator of a Markov semigroup on ℬ(G).
Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros dans Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983) : les solutions de l’équation de Schrödinger stationnaire à une dimension, à potentiel polynomial, sont codées exactement dans le domaine complexe par leurs développements BKW (développements formels, divergents, en puissances de la constante de Planck), d’une façon entièrement lisible dans la géométrie des périodes de la forme (=variable de position,...
We use the functorial properties of Rieffel’s pseudodifferential calculus to study families of operators associated to topological dynamical systems acted by a symplectic space. Information about the spectra and the essential spectra are extracted from the quasi-orbit structure of the dynamical system. The semi-classical behavior of the families of spectra is also studied.