Displaying 1581 – 1600 of 2286

Showing per page

Resonance of minimizers for n-level quantum systems with an arbitrary cost

Ugo Boscain, Grégoire Charlot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem describing a laser-induced population transfer on a n-level quantum system. For a convex cost depending only on the moduli of controls (i.e. the lasers intensities), we prove that there always exists a minimizer in resonance. This permits to justify some strategies used in experimental physics. It is also quite important because it permits to reduce remarkably the complexity of the problem (and extend some of our previous results for n=2 and n=3): instead...

Resonances and Spectral Shift Function near the Landau levels

Jean-François Bony, Vincent Bruneau, Georgi Raikov (2007)

Annales de l’institut Fourier

We consider the 3D Schrödinger operator H = H 0 + V where H 0 = ( - i - A ) 2 - b , A is a magnetic potential generating a constant magneticfield of strength b > 0 , and V is a short-range electric potential which decays superexponentially with respect to the variable along the magnetic field. We show that the resolvent of H admits a meromorphic extension from the upper half plane to an appropriate Riemann surface , and define the resonances of H as the poles of this meromorphic extension. We study their distribution near any fixed...

Résonances de Rayleigh en dimension 2

Didier Gamblin (2004)

Bulletin de la Société Mathématique de France

Nous étudions les résonances de Rayleigh créées par un obstacle strictement convexe à bord analytique en dimension 2. Nous montrons qu’il existe exactement deux suites de résonances ( z k , + ) et ( z k , - ) convergeant exponentiellement vite vers l’axe réel dans un voisinage polynomial de l’axe réel, et exponentiellement proches d’une suite de quasimodes réels. De plus, k - 1 z k , ± est un symbole analytique d’ordre 0 en la variable k - 1 dont on donne le premier terme du développement. Nous construisons pour cela des quasimodes...

Résonances près d’une énergie critique

Jean-François Bony (2001/2002)

Séminaire Équations aux dérivées partielles

Dans cet exposé, on décrit un travail effectué sous la direction de J. Sjöstrand. On prouve des majorations et des minorations du nombre de résonances d’un opérateur de Schrödinger semi-classique P = - h 2 Δ + V ( x ) dans des petits disques centrés en E 0 > 0 , une valeur critique de p ( x , ξ ) = ξ 2 + V ( x ) .

Restrictions of CP-semigroups to maximal commutative subalgebras

Franco Fagnola, Michael Skeide (2007)

Banach Center Publications

We give a necessary and sufficient criterion for a normal CP-map on a von Neumann algebra to admit a restriction to a maximal commutative subalgebra. We apply this result to give a far reaching generalization of Rebolledo's sufficient criterion for the Lindblad generator of a Markov semigroup on ℬ(G).

Résurgence de Voros et périodes des courbes hyperelliptiques

H. Dillinger, E. Delabaere, Frédéric Pham (1993)

Annales de l'institut Fourier

Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros [ dans Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983) ] : les solutions de l’équation de Schrödinger stationnaire à une dimension, à potentiel polynomial, sont codées exactement dans le domaine complexe par leurs développements BKW (développements formels, divergents, en puissances de la constante de Planck), d’une façon entièrement lisible dans la géométrie des périodes de la forme p d q ( q =variable de position,...

Currently displaying 1581 – 1600 of 2286