The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
176
In terms of the normal cone and the coderivative,
we provide some necessary and/or sufficient conditions of metric subregularity for
(not necessarily closed) convex multifunctions in normed spaces. As applications, we present some
error bound results for (not necessarily lower semicontinuous) convex functions on normed
spaces. These results improve and extend some existing error bound results.
La gestión de inventarios de productos perecederos ha atraído desde hace tiempo la atención de los investigadores de Dirección de Operaciones. En este artículo se presenta la modelización e implementación de un sistema de apoyo a la toma de decisiones (DSS) para la gestión de productos perecederos, aplicado a la distribución interhospitalaria de hemoderivados. En estos casos se trata de satisfacer en lo posible las demandas, tratando de evitar a la vez la caducidad de los productos en manos de los...
In this paper a multiparametric linear fractional functionals program, with parameters appearing only in the objective function, is generated. The optimum solution of this parametric program is supposed to satisfy the constraints as equations only. It is also shown that the set of parameters forms a convex polyhedron.
using point-to-set mappings we identify two new regions of stability in input optimization. Then we extend various results from the literature on optimality conditions, continuity of Lagrange multipliers, and the marginal value formula over the new and some old regions of stability.
A non-linear semi-coercive beam problem is solved in this article. Suitable numerical methods are presented and their uniform convergence properties with respect to the finite element discretization parameter are proved here. The methods are based on the minimization of the total energy functional, where the descent directions of the functional are searched by solving the linear problems with a beam on bilateral elastic ``springs''. The influence of external loads on the convergence properties is...
In the paper we consider EPCCs with convex quadratic objective functions and one set of complementarity constraints. For this class of problems we propose a possible generalization of the homotopy method for finding stationary points of MPCCs. We analyze the difficulties which arise from this generalization. Numerical results illustrate the performance for randomly generated test problems.
Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.
Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization....
In this note we consider a perturbed mathematical programming problem where both the objective and the constraint functions are polynomial in all underlying decision variables and in the perturbation parameter ε. Recently, the theory of Gröbner bases was used to show that solutions of the system of first order optimality conditions can be represented as Puiseux series in ε in a neighbourhood of ε = 0. In this paper we show that the determination of the branching order and the order of the pole (if...
The ideas of robust sets, robust functions and robustness of general set-valued maps were introduced by Chew and Zheng [7,26], and further developed by Shi, Zheng, Zhuang [18,19,20], Phú, Hoffmann and Hichert [8,9,10,17] to weaken up the semi-continuity requirements of certain global optimization algorithms. The robust analysis, along with the measure theory, has well served as the basis for the integral global optimization method (IGOM) (Chew and Zheng [7]). Hence, we have attempted to extend the...
In this note we consider a linear-fractional programming problem with equality linear constraints. Following Rohn, we define a generalized relative sensitivity coefficient measuring the sensitivity of the optimal value for a linear program and a linear-fractional minimization problem with respect to the perturbations in the problem data.
By using an extension of Rohn's result for the linear programming case, we obtain, via Charnes-Cooper variable change, the relative sensitivity coefficient for...
Studying a critical value function in parametric nonlinear programming, we recall conditions guaranteeing that is a function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of . Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization....
Currently displaying 81 –
100 of
176