The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function of the particle and the control is the length of the potential well. We prove the following controllability result : given close enough to an eigenstate corresponding to the length and close enough to another eigenstate corresponding to the length , there exists a continuous function with , such that and , and which...
This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180–203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547–552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially...
Consider a Timoshenko beam that is clamped to an axis perpendicular to the axis of the beam. We study the problem to move the beam from a given initial state to a position of rest, where the movement is controlled by the angular acceleration of the axis to which the beam is clamped. We show that this problem of controllability is solvable if the time of rotation is long enough and a certain parameter that describes the material of the beam is a rational number that has an even numerator and an odd...
Consider a Timoshenko beam that is clamped to an axis perpendicular to
the axis of the beam.
We study the problem to move the beam from a given initial state
to a position of rest, where the movement is controlled by the angular
acceleration of the axis to which the beam is clamped.
We show that this problem of controllability is solvable if the time of
rotation is long enough and a certain parameter
that describes the material of the beam
is a rational number
that has an even numerator and an...
This short note is devoted to a discussion of a general approach to controllability of PDE’s introduced by Agrachev and Sarychev in 2005. We use the example of a 1D Burgers equation to illustrate the main ideas. It is proved that the problem in question is controllable in an appropriate sense by a two-dimensional external force. This result is not new and was proved earlier in the papers [AS05, AS07] in a more complicated situation of 2D Navier–Stokes equations.
This paper is concerned with the internal distributed control problem for the 1D Schrödinger equation, i ut(x,t) = −uxx+α(x) u+m(u) u, that arises in quantum semiconductor models. Here m(u) is a non local Hartree–type nonlinearity stemming from the coupling with the 1D Poisson equation, and α(x) is a regular function with linear growth at infinity, including constant electric fields. By means of both the Hilbert Uniqueness Method and the contraction mapping theorem it is shown that for initial and...
We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...
In the paper definitions of various kinds of stability and boundedness of solutions of linear controllable systems of partial differential equations are introduced and their interconnections are derived. By means of Ljapunov's functions theorems are proved which give necessary and sufficient conditions for particular kinds of stability and boundedness of the solutions.
We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function ϕ of the particle and the control is the length l(t) of the potential well. We prove the following controllability result :
given close enough to an eigenstate corresponding to the length l = 1 and close enough to another eigenstate corresponding to the length l=1, there exists a continuous function with T > 0, such that l(0)...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...
We consider a semilinear heat equation in an unbounded
domain Ω with partially known initial data. The insensitizing problem
consists in finding a control function such that some functional of the
state is locally insensitive to the perturbations of these initial data. For
bounded domains Bodart and Fabre proved the existence of insensitizing controls of the norm of the observation of the solution in an open
subset of the domain. In this paper we prove similar results when Ω is
unbounded. We consider...
We consider a structural acoustic problem with the flexible wall modeled by a thermoelastic plate, subject to Dirichlet boundary control in the thermal component. We establish sharp regularity results for the traces of the thermal variable on the boundary in case the system is supplemented with clamped mechanical boundary conditions. These regularity estimates are most crucial for validity of the optimal control theory developed by Acquistapace et al. [Adv. Differential Equations, 2005], which ensures...
We analyze the problem of boundary observability of the finite-difference space semidiscretizations of the 2-d wave equation in the square. We prove the uniform (with respect to the meshsize)
boundary observability for the solutions obtained by the two-grid preconditioner introduced by Glowinski [9]. Our method uses previously known uniform observability inequalities for low
frequency solutions and a dyadic spectral time decomposition. As a consequence we prove the convergence of the two-grid algorithm...
Currently displaying 41 –
60 of
64