Displaying 61 – 80 of 441

Showing per page

Boundary controllability of the finite-difference space semi-discretizations of the beam equation

Liliana León, Enrique Zuazua (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a finite difference semi-discrete scheme for the approximation of the boundary exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform (with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural functional setting. We then prove that there are two ways of restoring the uniform controllability...

Boundary controllability of the finite-difference space semi-discretizations of the beam equation

Liliana León, Enrique Zuazua (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a finite difference semi-discrete scheme for the approximation of the boundary exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform (with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural functional setting. We then prove that there are two ways of restoring the uniform controllability...

Boundary exact controllability for a porous elastic Timoshenko system

Manoel J. Santos, Carlos A. Raposo, Leonardo R. S. Rodrigues (2020)

Applications of Mathematics

In this paper, we consider a one-dimensional system governed by two partial differential equations. Such a system models phenomena in engineering, such as vibrations in beams or deformation of elastic bodies with porosity. By using the HUM method, we prove that the system is boundary exactly controllable in the usual energy space. We will also determine the minimum time allowed by the method for the controllability to occur.

Boundary feedback stabilization of a three-layer sandwich beam : Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Boundary sentinels in cylindrical domains.

J. Saint Jean Paulin, M. Vanninathan (2001)

Revista Matemática Complutense

We study a model describing vibrations of a cylindrical domain with thickness e > 0. A characteristic of this model is that it contains pollution terms in the boundary data and missing terms in the initial data. The method of sentinels'' of J. L. Lions [7] is followed to construct a sentinel using the observed vibrations on the boundary. Such a sentinel, by construction, provides information on pollution terms independent of missing terms. This requires resolution of initial-boundary value...

Boundary stabilization of Maxwell’s equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.

Boundary stabilization of Maxwell's equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell's equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard" identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...

Comparison of active control techniques over a dihedral plane

Emmanuel Creusé (2001)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

Comparison of active control techniques over a dihedral plane

Emmanuel Creusé (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

Configuring a sensor network for fault detection in distributed parameter systems

Maciej Patan, Dariusz Uciński (2008)

International Journal of Applied Mathematics and Computer Science

The problem of fault detection in distributed parameter systems (DPSs) is formulated as that of maximizing the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A computational scheme is provided for the design of a network of observation locations in a spatial domain that are supposed to be used while detecting changes in the underlying parameters of a distributed parameter system. The setting considered relates to a situation where from among...

Currently displaying 61 – 80 of 441