The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
    					
                                        Displaying 21 – 
                                        40 of 
                                        2295
                        
      
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We apply the well-known homotopy continuation method to address the
motion planning problem (MPP) for smooth driftless control-affine
systems. The homotopy continuation method is a Newton-type procedure
to effectively determine functions only defined implicitly. That
approach requires first to characterize the singularities of a
surjective map and next to prove global existence for the solution of
an ordinary differential equation, the Wazewski equation. In the
context of the MPP, the aforementioned...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper presents a new learning algorithm for the design of Mamdani- type or fully-linguistic fuzzy controllers based on available input-output data. It relies on the use of a previously introduced parametrized defuzzification strategy. The learning scheme is supported by an investigated property of the defuzzification method. In addition, the algorithm is tested by considering a typical non-linear function that has been adopted in a number of published research articles. The test stresses on...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach is compared...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We consider chained systems that model various systems of mechanical or biological
          origin. It is known according to Brockett that this class of systems, which are
          controllable, is not stabilizable by continuous stationary feedback (i.e.
          independent of time). Various approaches have been proposed to remedy this
          problem, especially instationary or discontinuous feedbacks. Here, we look at another
          stabilization strategy (by continuous stationary or...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We consider chained systems that model various systems of mechanical or biological
          origin. It is known according to Brockett that this class of systems, which are
          controllable, is not stabilizable by continuous stationary feedback (i.e.
          independent of time). Various approaches have been proposed to remedy this
          problem, especially instationary or discontinuous feedbacks. Here, we look at another
          stabilization strategy (by continuous stationary or...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper deals with the global position control problem of robot manipulators in joint space, a new family of control schemes consisting of a suitable combination of hyperbolic functions is presented. The proposed control family includes a large class of bounded hyperbolic-type control schemes to drive both position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based strict...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper presents a novel family of Lyapunov-based controllers for the maximum power point tracking problem in the buck converter case. The solar power generation system here considered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter. Lyapunov function candidates depending on the output are considered to develop conditions which, in some cases, can be expressed as linear matrix inequalities; these conditions guarantee that the output goes asymptotically to zero,...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process is used...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In this paper the exact decoupling problem of signals that are accessible for measurement is investigated. Exploiting the tools and the procedures of the geometric approach, the structure of a feedforward compensator is derived that, cascaded to a linear dynamical system and taking the measurable signal as input, provides the control law that solves the decoupling problem and ensures the internal stability of the overall system.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We show how to use the extension and torsion functors in order to compute the torsion submodule of a differential module associated with a multidimensional control system. In particular, we show that the concept of the weak primeness of matrices corresponds to the torsion-freeness of a certain module.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This paper introduces a new classifier design method that is based on a modification of the classical Ho-Kashyap procedure. The proposed method uses the absolute error, rather than the squared error, to design a linear classifier. Additionally, easy control of the generalization ability and robustness to outliers are obtained. Next, an extension to a nonlinear classifier by the mixture-of-experts technique is presented. Each expert is represented by a fuzzy if-then rule in the Takagi-Sugeno-Kang...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
In this paper, we consider a nonparametric Shewhart chart for fuzzy data. We utilize the fuzzy data without transforming them into a real-valued scalar (a representative value). Usually fuzzy data (described by fuzzy random variables) do not have a distributional model available, and also the size of the fuzzy sample data is small. Based on the bootstrap methodology, we design a nonparametric Shewhart control chart in the space of fuzzy random variables equipped with some L2 metric, in which a novel...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
First, a fuzzy system based on ifFirst, a fuzzy system based on if-then rules and with parametric consequences is recalled. Then, it is shown that the globalthen rules and with parametric consequences is recalled. Then, it is shown that the global and local ε-insensitive learning of the above fuzzy system may be presented as a combination of both an ε-insensitive gradient method and solving a system of linear inequalities. Examples are given of using the introduced method to design fuzzy models...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
When conducting a dynamic simulation of a multibody mechanical system, the model definition may need to be altered during the simulation course due to, e.g., changes in the way the system interacts with external objects. In this paper, we propose a general procedure for modifying simulation models of articulated figures, particularly useful when dealing with systems in time-varying contact with the environment. The proposed algorithm adjusts model connectivity, geometry and current state, producing...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The problem of zeroing the output in an arbitrary linear continuous-time system S(A,B,C,D) with a nonvanishing transfer function is discussed and necessary conditions for output-zeroing inputs are formulated. All possible real-valued inputs and real initial conditions which produce the identically zero system response are characterized. Strictly proper and proper systems are discussed separately.
    			                    
    			                 
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 21 – 
                                        40 of 
                                        2295