Displaying 61 – 80 of 370

Showing per page

Constrained robust adaptive stabilization for a class of lower triangular systems with unknown control direction

Jianglin Lan, Weijie Sun, Yunjian Peng (2014)

Kybernetika

This paper studies the constrained robust adaptive stabilization problem for a class of lower triangular systems with unknown control direction. A robust adaptive feedback control law for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with Nussbaum gain. Such a controlled system arises from the study of the constrained robust output regulation problem for a class of output feedback systems with the unknown control direction and a nonlinear exosystem. An application...

Constrained stabilization of a dynamic systems: a case study

Franco Blanchini, S. Cotterli, G. Koruza, S. Miani, R. Siagri, Luciano Tubaro (1999)

Kybernetika

In this work we consider the problem of determining and implementing a state feedback stabilizing control law for a laboratory two-tank dynamic system in the presence of state and control constraints. We do this by exploiting the properties of the polyhedral Lyapunov functions, i. e. Lyapunov functions whose level surfaces are polyhedra, in view of their capability of providing an arbitrarily good approximation of the maximal set of attraction, which is the largest set of initial states which can...

Construction of a controller with a generalized linear immersion

Javier Diaz-Vargas, Dennis Tuyub-Puc, Celia Villanueva-Novelo (2011)

Kybernetika

Gröbner bases for modules are used to calculate a generalized linear immersion for a plant whose solutions to its regulation equations are polynomials or pseudo-polynomials. After calculating the generalized linear immersion, we build the controller which gives the robust regulation.

Continuity of solutions of Riccati equations for the discrete-time JLQP

Adam Czornik, Andrzej Świerniak (2002)

International Journal of Applied Mathematics and Computer Science

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun, Lahcen Maniar, Abdelghafour Atlas (2020)

Kybernetika

We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...

Control Lyapunov functions and stabilization by means of continuous time-varying feedback

Iasson Karafyllis, John Tsinias (2009)

ESAIM: Control, Optimisation and Calculus of Variations

For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control 4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying periodic...

Control Lyapunov functions and stabilization by means of continuous time-varying feedback

Iasson Karafyllis, John Tsinias (2008)

ESAIM: Control, Optimisation and Calculus of Variations

For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying...

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

ludovic faubourg, jean-baptiste pomet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.

Control of a class of chaotic systems by a stochastic delay method

Lan Zhang, Cheng Jian Zhang, Dongming Zhao (2010)

Kybernetika

A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

Control of Traveling Solutions in a Loop-Reactor

Y. Smagina, M. Sheintuch (2010)

Mathematical Modelling of Natural Phenomena

We consider the stabilization of a rotating temperature pulse traveling in a continuous asymptotic model of many connected chemical reactors organized in a loop with continuously switching the feed point synchronously with the motion of the pulse solution. We use the switch velocity as control parameter and design it to follow the pulse: the switch velocity is updated at every step on-line using the discrepancy between the temperature at the front...

Controlled functional differential equations : approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2009)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m -input, m -output, minimum-phase systems with sign-definite “high-frequency gain”. The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded...

Controlled functional differential equations: approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2008)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m-input, m-output, minimum-phase systems with sign-definite “high-frequency gain". The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded with...

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controller design for bush-type 1-d wave networks

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Currently displaying 61 – 80 of 370