Decay of solutions of the wave equation in the exterior of several convex bodies
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 2, page 113-146
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topIkawa, Mitsuru. "Decay of solutions of the wave equation in the exterior of several convex bodies." Annales de l'institut Fourier 38.2 (1988): 113-146. <http://eudml.org/doc/74796>.
@article{Ikawa1988,
abstract = {We study the decay of solutions to the wave equation in the exterior of several strictly convex bodies. A sufficient condition for exponential decay of the local energy is expressed in terms of the period and the Poincare map of periodic rays in the exterior domain.},
author = {Ikawa, Mitsuru},
journal = {Annales de l'institut Fourier},
keywords = {exterior of several strictly convex bodies; exponential decay; local energy; Poincaré map; periodic rays},
language = {eng},
number = {2},
pages = {113-146},
publisher = {Association des Annales de l'Institut Fourier},
title = {Decay of solutions of the wave equation in the exterior of several convex bodies},
url = {http://eudml.org/doc/74796},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Ikawa, Mitsuru
TI - Decay of solutions of the wave equation in the exterior of several convex bodies
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 2
SP - 113
EP - 146
AB - We study the decay of solutions to the wave equation in the exterior of several strictly convex bodies. A sufficient condition for exponential decay of the local energy is expressed in terms of the period and the Poincare map of periodic rays in the exterior domain.
LA - eng
KW - exterior of several strictly convex bodies; exponential decay; local energy; Poincaré map; periodic rays
UR - http://eudml.org/doc/74796
ER -
References
top- [BGR] C. BARDOS, J.-C. GUILLOT and J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ., 7 (1982), 905-958. Zbl0496.35067MR84d:35120
- [G] C. GÉRARD, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Université de Paris-Sud — Département de Mathématiques, 1987.
- [I1] M. IKAWA, Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math., 19 (1982), 459-509. Zbl0498.35008MR84e:35018
- [I2] M. IKAWA, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 23 (1983), 127-194. Zbl0561.35060MR84e:35118
- [I3] M. IKAWA, On the poles of the scattering matrix for two convex obstacles, Journées "Équations aux dérivées partielles" de Saint-Jean-de-Monts, 1985. Zbl0587.35057MR832003
- [I4] M. IKAWA, Precise informations on the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 27 (1987), 69-102. Zbl0637.35068MR88e:35143
- [I5] M. IKAWA, Sur la décroissance d'énergie locale du problème extérieur avec plusieurs (n ≥ 3) obstacles strictement convexes, Séminaire de théorie spectacle et géométrie, 1985-1986. Zbl0900.35098
- [KLS] J. B. KELLER, R. M. LEWIS and B. D. SECKLER, Asymptotic solution of some diffraction problems, Comm. Pure Appl. Math., 9 (1956), 207-265. Zbl0073.44105MR18,43b
- [LP1] P. D. LAX and R. S. PHILLIPS, Scattering theory, Academic Press, (1967). Zbl0186.16301
- [LP2] P. D. LAX, R. S. PHILLIPS, A logarithmic bound on the location of the poles of the scattering matrix, Arch. Rat. Mech. and Anal., 40 (1971), 268-280. Zbl0216.13002MR45 #5594
- [Me1] R. MELROSE, Singularities and energy decay of acoustical scattering, Duke Math. J., 46 (1979), 43-59. Zbl0415.35050MR80h:35104
- [Me2] R. MELROSE, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées "Équations aux dérivées partielles" de Saint-Jean-de-Monts, 1984. Zbl0621.35073
- [MeS] P. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems, I and II, Comm. Pure Appl. Math., 31 (1978), 593-617, 35 (1982), 129-168. Zbl0546.35083
- [Mi] S. MIZOHATA, Sur l'analyticité de la fonction spectrale de l'opérateur Δ relatif au problème extérieur, Proc. Japan Acad., 38 (1963), 352-357. Zbl0122.33802MR29 #2518
- [P] V. M. PETKOV, La distribution des poles de la matrice de diffusion, Séminaire Goulaouic-Meyer-Schwartz, 1982-1983. Zbl0537.35061
- [R] J. RALSTON, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823. Zbl0209.40402MR40 #7642
Citations in EuDML Documents
top- Nicolas Burq, Contrôle de l'équation des plaques en présence d'obstacles strictement convexes
- L. Stoyanov, Regularity properties of the generalized hamiltonian flow
- Nicolas Burq, Contrôle de l'équation de Schrödinger en présence d'obstacles strictement convexes
- Nicolas Burq, Vitesse de convergence vers le réel des résonances
- N. Burq, Pôles de diffusion engendrés par un coin
- Mitsuru Ikawa, On zeta function and scattering poles for several convex bodies
- Mitsuru Ikawa, On poles of scattering matrices for several convex bodies
- Jean-François Bony, Vesselin Petkov, Estimates for the cut-off resolvent of the Laplacian for trapping obstacles
- Stéphane Nonnenmacher, Maciej Zworski, Quantum decay rates in chaotic scattering
- V. M. Petkov, Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.