Decay of solutions of the wave equation in the exterior of several convex bodies

Mitsuru Ikawa

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 2, page 113-146
  • ISSN: 0373-0956

Abstract

top
We study the decay of solutions to the wave equation in the exterior of several strictly convex bodies. A sufficient condition for exponential decay of the local energy is expressed in terms of the period and the Poincare map of periodic rays in the exterior domain.

How to cite

top

Ikawa, Mitsuru. "Decay of solutions of the wave equation in the exterior of several convex bodies." Annales de l'institut Fourier 38.2 (1988): 113-146. <http://eudml.org/doc/74796>.

@article{Ikawa1988,
abstract = {We study the decay of solutions to the wave equation in the exterior of several strictly convex bodies. A sufficient condition for exponential decay of the local energy is expressed in terms of the period and the Poincare map of periodic rays in the exterior domain.},
author = {Ikawa, Mitsuru},
journal = {Annales de l'institut Fourier},
keywords = {exterior of several strictly convex bodies; exponential decay; local energy; Poincaré map; periodic rays},
language = {eng},
number = {2},
pages = {113-146},
publisher = {Association des Annales de l'Institut Fourier},
title = {Decay of solutions of the wave equation in the exterior of several convex bodies},
url = {http://eudml.org/doc/74796},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Ikawa, Mitsuru
TI - Decay of solutions of the wave equation in the exterior of several convex bodies
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 2
SP - 113
EP - 146
AB - We study the decay of solutions to the wave equation in the exterior of several strictly convex bodies. A sufficient condition for exponential decay of the local energy is expressed in terms of the period and the Poincare map of periodic rays in the exterior domain.
LA - eng
KW - exterior of several strictly convex bodies; exponential decay; local energy; Poincaré map; periodic rays
UR - http://eudml.org/doc/74796
ER -

References

top
  1. [BGR] C. BARDOS, J.-C. GUILLOT and J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Diff. Equ., 7 (1982), 905-958. Zbl0496.35067MR84d:35120
  2. [G] C. GÉRARD, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Université de Paris-Sud — Département de Mathématiques, 1987. 
  3. [I1] M. IKAWA, Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math., 19 (1982), 459-509. Zbl0498.35008MR84e:35018
  4. [I2] M. IKAWA, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 23 (1983), 127-194. Zbl0561.35060MR84e:35118
  5. [I3] M. IKAWA, On the poles of the scattering matrix for two convex obstacles, Journées "Équations aux dérivées partielles" de Saint-Jean-de-Monts, 1985. Zbl0587.35057MR832003
  6. [I4] M. IKAWA, Precise informations on the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., 27 (1987), 69-102. Zbl0637.35068MR88e:35143
  7. [I5] M. IKAWA, Sur la décroissance d'énergie locale du problème extérieur avec plusieurs (n ≥ 3) obstacles strictement convexes, Séminaire de théorie spectacle et géométrie, 1985-1986. Zbl0900.35098
  8. [KLS] J. B. KELLER, R. M. LEWIS and B. D. SECKLER, Asymptotic solution of some diffraction problems, Comm. Pure Appl. Math., 9 (1956), 207-265. Zbl0073.44105MR18,43b
  9. [LP1] P. D. LAX and R. S. PHILLIPS, Scattering theory, Academic Press, (1967). Zbl0186.16301
  10. [LP2] P. D. LAX, R. S. PHILLIPS, A logarithmic bound on the location of the poles of the scattering matrix, Arch. Rat. Mech. and Anal., 40 (1971), 268-280. Zbl0216.13002MR45 #5594
  11. [Me1] R. MELROSE, Singularities and energy decay of acoustical scattering, Duke Math. J., 46 (1979), 43-59. Zbl0415.35050MR80h:35104
  12. [Me2] R. MELROSE, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées "Équations aux dérivées partielles" de Saint-Jean-de-Monts, 1984. Zbl0621.35073
  13. [MeS] P. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems, I and II, Comm. Pure Appl. Math., 31 (1978), 593-617, 35 (1982), 129-168. Zbl0546.35083
  14. [Mi] S. MIZOHATA, Sur l'analyticité de la fonction spectrale de l'opérateur Δ relatif au problème extérieur, Proc. Japan Acad., 38 (1963), 352-357. Zbl0122.33802MR29 #2518
  15. [P] V. M. PETKOV, La distribution des poles de la matrice de diffusion, Séminaire Goulaouic-Meyer-Schwartz, 1982-1983. Zbl0537.35061
  16. [R] J. RALSTON, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823. Zbl0209.40402MR40 #7642

Citations in EuDML Documents

top
  1. Nicolas Burq, Contrôle de l'équation des plaques en présence d'obstacles strictement convexes
  2. L. Stoyanov, Regularity properties of the generalized hamiltonian flow
  3. Nicolas Burq, Contrôle de l'équation de Schrödinger en présence d'obstacles strictement convexes
  4. Nicolas Burq, Vitesse de convergence vers le réel des résonances
  5. N. Burq, Pôles de diffusion engendrés par un coin
  6. Mitsuru Ikawa, On zeta function and scattering poles for several convex bodies
  7. Mitsuru Ikawa, On poles of scattering matrices for several convex bodies
  8. Jean-François Bony, Vesselin Petkov, Estimates for the cut-off resolvent of the Laplacian for trapping obstacles
  9. Stéphane Nonnenmacher, Maciej Zworski, Quantum decay rates in chaotic scattering
  10. V. M. Petkov, Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.