Berezin quantization and holomorphic representations
Let be the semidirect product where is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space . Let be a coadjoint orbit of associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation of . We consider the case when the corresponding little group is the centralizer of a torus of . By dequantizing a suitable realization of on a Hilbert space of functions on where , we construct a symplectomorphism between...
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
Let be a Hermitian symmetric space of the noncompact type and let be a discrete series representation of holomorphically induced from a unitary character of . Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple by a suitable modification of the Berezin calculus on . We extend the corresponding Berezin transform to a class of functions on which contains the Berezin symbol of for in the Lie algebra of . This allows...
Let be a Hermitian symmetric space of the non-compact type and let be a discrete series representation of which is holomorphically induced from a unitary irreducible representation of . In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of . Here we study the corresponding...
Let be the semidirect product where is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space . Let be a unitary irreducible representation of which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of whose little group is a maximal compact subgroup of . We construct an invariant symbolic calculus for , under some technical hypothesis. We give some examples including the Poincaré group.
We construct and study a Stratonovich-Weyl correspondence for the holomorphic representations of the Jacobi group.
Let be a quasi-Hermitian Lie group with Lie algebra and be a compactly embedded subgroup of . Let be a regular element of which is fixed by . We give an explicit -equivariant diffeomorphism from a complex domain onto the coadjoint orbit of . This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where is associated with a unitary irreducible representation of which is holomorphically...
We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group.
In this note, we study formal deformations of derived representations of the principal series representations of . In particular, we recover all the representations of the derived principal series by deforming one of them. Similar results are also obtained for .
Page 1