Displaying similar documents to “The restriction theorem for fully nonlinear subequations”

On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values

Nguyen Vu Dzung, Le Thi Phuong Ngoc, Nguyen Huu Nhan, Nguyen Thanh Long (2024)

Mathematica Bohemica

Similarity:

We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values u ( η 1 , t ) , , u ( η q , t ) with 0 η 1 < η 2 < < η q < 1 . By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case ( P q ) of (P) in which the nonlinear term contains the sum S q [ u 2 ] ( t ) = q - 1 i = 1 q u 2 ( ( i - 1 ) q , t ) . Under suitable conditions, we prove that the solution of ( P q ) converges to the solution...

Entire solutions to a class of fully nonlinear elliptic equations

Ovidiu Savin (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We study nonlinear elliptic equations of the form F ( D 2 u ) = f ( u ) where the main assumption on F and f is that there exists a one dimensional solution which solves the equation in all the directions ξ n . We show that entire monotone solutions u are one dimensional if their 0 level set is assumed to be Lipschitz, flat or bounded from one side by a hyperplane.

Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems

Tayeb Benhamoud, Elmehdi Zaouche, Mahmoud Bousselsal (2024)

Mathematica Bohemica

Similarity:

This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation u t - M ( Ω φ u d x ) div ( A ( x , t , u ) u ) = g ( x , t , u ) in Ω × ( 0 , T ) , where Ω is a bounded domain of n ( n 1 ) , T > 0 is a positive number, A ( x , t , u ) is an n × n matrix of variable coefficients depending on u and M : , φ : Ω , g : Ω × ( 0 , T ) × are given functions. We consider two different assumptions on g . The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if A ( x , t , u ) = a ( x , t ) depends only on...

Perturbed nonlinear degenerate problems in N

A. El Khalil, S. El Manouni, M. Ouanan (2009)

Applicationes Mathematicae

Similarity:

Via critical point theory we establish the existence and regularity of solutions for the quasilinear elliptic problem ⎧ d i v ( x , u ) + a ( x ) | u | p - 2 u = g ( x ) | u | p - 2 u + h ( x ) | u | s - 1 u in N ⎨ ⎩ u > 0, l i m | x | u ( x ) = 0 , where 1 < p < N; a(x) is assumed to satisfy a coercivity condition; h(x) and g(x) are not necessarily bounded but satisfy some integrability restrictions.

A bifurcation theory for some nonlinear elliptic equations

Biagio Ricceri (2003)

Colloquium Mathematicae

Similarity:

We deal with the problem ⎧ -Δu = f(x,u) + λg(x,u), in Ω, ⎨ ( P λ ) ⎩ u Ω = 0 where Ω ⊂ ℝⁿ is a bounded domain, λ ∈ ℝ, and f,g: Ω×ℝ → ℝ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists λ* > 0 such that, for each λ ∈ (0,λ*), problem ( P λ ) admits a non-zero, non-negative strong solution u λ p 2 W 2 , p ( Ω ) such that l i m λ 0 | | u λ | | W 2 , p ( Ω ) = 0 for all p ≥ 2. Moreover, the function λ I λ ( u λ ) is negative and decreasing in ]0,λ*[, where I λ is the energy functional related to ( P λ ). ...

On boundary value problems for systems of nonlinear generalized ordinary differential equations

Malkhaz Ashordia (2017)

Czechoslovak Mathematical Journal

Similarity:

A general theorem (principle of a priori boundedness) on solvability of the boundary value problem d x = d A ( t ) · f ( t , x ) , h ( x ) = 0 is established, where f : [ a , b ] × n n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A : [ a , b ] n × n with bounded total variation components, and h : BV s ( [ a , b ] , n ) n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x ( t 1 ( x ) ) = ( x ) · x ( t 2 ( x ) ) + c 0 , where t i : BV s ( [ a , b ] , n ) [ a , b ] ( i = 1 , 2 ) and : BV s ( [ a , b ] , n ) n are continuous...

Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions

Catherine Bandle, Joachim von Below, Wolfgang Reichel (2008)

Journal of the European Mathematical Society

Similarity:

We consider linear elliptic equations - Δ u + q ( x ) u = λ u + f in bounded Lipschitz domains D N with mixed boundary conditions u / n = σ ( x ) λ u + g on D . The main feature of this boundary value problem is the appearance of λ both in the equation and in the boundary condition. In general we make no assumption on the sign of the coefficient σ ( x ) . We study positivity principles and anti-maximum principles. One of our main results states that if σ is somewhere negative, q 0 and D q ( x ) d x > 0 then there exist two eigenvalues λ - 1 , λ 1 such the positivity...

On compactness and connectedness of the paratingent

Wojciech Zygmunt (2016)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this note we shall prove that for a continuous function ϕ : Δ n , where Δ ,  the paratingent of ϕ at a Δ is a non-empty and compact set in n if and only if ϕ satisfies Lipschitz condition in a neighbourhood of a . Moreover, in this case the paratingent is a connected set.

Existence theorems for nonlinear differential equations having trichotomy in Banach spaces

Adel Mahmoud Gomaa (2017)

Czechoslovak Mathematical Journal

Similarity:

We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation x ˙ ( t ) = ( t ) x ( t ) + f ( t , x ( t ) ) , t ( P ) where { ( t ) : t } is a family of linear operators from a Banach space E into itself and f : × E E . By L ( E ) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0 , we let C ( [ - d , 0 ] , E ) be the Banach space of continuous functions from [ - d , 0 ] into E and f d : [ a , b ] × C ( [ - d , 0 ] , E ) E . Let ^ : [ a , b ] L ( E ) be a strongly measurable and Bochner integrable operator on [ a , b ] and for t [ a , b ] define τ t x ( s ) = x ( t + s ) for each s [ - d , 0 ] . We prove that, under certain...

Generalized versions of Ilmanen lemma: Insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for a normed linear space X , if f 1 : X is continuous and semiconvex with modulus ω , f 2 : X is continuous and semiconcave with modulus ω and f 1 f 2 , then there exists f C 1 , ω ( X ) such that f 1 f f 2 . Using this result we prove a generalization of Ilmanen lemma (which deals with the case ω ( t ) = t ) to the case of an arbitrary nontrivial modulus ω . This generalization (where a C l o c 1 , ω function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

Spreading and vanishing in nonlinear diffusion problems with free boundaries

Yihong Du, Bendong Lou (2015)

Journal of the European Mathematical Society

Similarity:

We study nonlinear diffusion problems of the form u t = u x x + f ( u ) with free boundaries. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundary representing the expanding front. For special f ( u ) of the Fisher-KPP type, the problem was investigated by Du and Lin [DL]. Here we consider much more general nonlinear terms. For any f ( u ) which is C 1 and satisfies f ( 0 ) = 0 , we show that the omega limit set ω ( u ) of every bounded positive solution is determined by a stationary...

Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation

Monica Musso, Frank Pacard, Juncheng Wei (2012)

Journal of the European Mathematical Society

Similarity:

We address the problem of the existence of finite energy solitary waves for nonlinear Klein-Gordon or Schrödinger type equations Δ u - u + f ( u ) = 0 in N , u H 1 ( N ) , where N 2 . Under natural conditions on the nonlinearity f , we prove the existence of 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦𝑚𝑎𝑛𝑦𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑎𝑙𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 in any dimension N 2 . Our result complements earlier works of Bartsch and Willem ( N = 4 𝚘𝚛 N 6 ) and Lorca-Ubilla ( N = 5 ) where solutions invariant under the action of O ( 2 ) × O ( N - 2 ) are constructed. In contrast, the solutions we construct are invariant under the action of D k × O ( N - 2 ) where D k O ( 2 ) denotes the dihedral...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

Existence of renormalized solutions for some degenerate and non-coercive elliptic equations

Youssef Akdim, Mohammed Belayachi, Hassane Hjiaj (2023)

Mathematica Bohemica

Similarity:

This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by t 2 - div ( b ( | u | ) | u | p - 2 u ) + d ( | u | ) | u | p = f - div ( c ( x ) | u | α ) in Ω , u = 0 on Ω , t where Ω is a bounded open set of N ( N 2 ) with 1 < p < N and f L 1 ( Ω ) , under some growth conditions on the function b ( · ) and d ( · ) , where c ( · ) is assumed to be in L N ( p - 1 ) ( Ω ) . We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Unconditional uniqueness of higher order nonlinear Schrödinger equations

Friedrich Klaus, Peer Kunstmann, Nikolaos Pattakos (2021)

Czechoslovak Mathematical Journal

Similarity:

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u 0 X , where X { M 2 , q s ( ) , H σ ( 𝕋 ) , H s 1 ( ) + H s 2 ( 𝕋 ) } and q [ 1 , 2 ] , s 0 , or σ 0 , or s 2 s 1 0 . Moreover, if M 2 , q s ( ) L 3 ( ) , or if σ 1 6 , or if s 1 1 6 and s 2 > 1 2 we show that the Cauchy problem is unconditionally wellposed in X . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ...

The general rigidity result for bundles of A -covelocities and A -jets

Jiří M. Tomáš (2017)

Czechoslovak Mathematical Journal

Similarity:

Let M be an m -dimensional manifold and A = 𝔻 k r / I = N A a Weil algebra of height r . We prove that any A -covelocity T x A f T x A * M , x M is determined by its values over arbitrary max { width A , m } regular and under the first jet projection linearly independent elements of T x A M . Further, we prove the rigidity of the so-called universally reparametrizable Weil algebras. Applying essentially those partial results we give the proof of the general rigidity result T A * M T r * M without coordinate computations, which improves and generalizes the partial...

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Similarity:

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k Φ i 1 ( z 0 ) , [ Φ i 1 , Φ i 2 ] ( z 0 ) , [ [ Φ i 1 , Φ i 2 ] , Φ i 3 ] ( z 0 ) , ... ( h , i h k + 1 ) belong to T z 0 𝕄 . Such a property has been proved in [9] for k = 1 and its proof in the...

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n &gt; 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .