The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The discriminant and oscillation lengths for contact and Legendrian isotopies”

Isometric embeddings of a class of separable metric spaces into Banach spaces

Sophocles K. Mercourakis, Vassiliadis G. Vassiliadis (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( M , d ) be a bounded countable metric space and c > 0 a constant, such that d ( x , y ) + d ( y , z ) - d ( x , z ) c , for any pairwise distinct points x , y , z of M . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .

Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds

Neil Seshadri (2009)

Bulletin de la Société Mathématique de France

Similarity:

To any smooth compact manifold M endowed with a contact structure H and partially integrable almost CR structure J , we prove the existence and uniqueness, modulo high-order error terms and diffeomorphism action, of an approximately Einstein ACH (asymptotically complex hyperbolic) metric g on M × ( - 1 , 0 ) . We consider the asymptotic expansion, in powers of a special defining function, of the volume of M × ( - 1 , 0 ) with respect to g and prove that the log term coefficient is independent of J (and any choice...

Metric unconditionality and Fourier analysis

Stefan Neuwirth (1998)

Studia Mathematica

Similarity:

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces L E p ( ) and C E ( ) of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces p E ( ) , p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between L E p ( ) ...

Wasserstein metric and subordination

Philippe Clément, Wolfgang Desch (2008)

Studia Mathematica

Similarity:

Let ( X , d X ) , ( Ω , d Ω ) be complete separable metric spaces. Denote by (X) the space of probability measures on X, by W p the p-Wasserstein metric with some p ∈ [1,∞), and by p ( X ) the space of probability measures on X with finite Wasserstein distance from any point measure. Let f : Ω p ( X ) , ω f ω , be a Borel map such that f is a contraction from ( Ω , d Ω ) into ( p ( X ) , W p ) . Let ν₁,ν₂ be probability measures on Ω with W p ( ν , ν ) finite. On X we consider the subordinated measures μ i = Ω f ω d ν i ( ω ) . Then W p ( μ , μ ) W p ( ν , ν ) . As an application we show that the solution measures ϱ α ( t ) ...

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

About w c s -covers and w c s * -networks on the Vietoris hyperspace ( X )

Luong Quoc Tuyen, Ong V. Tuyen, Phan D. Tuan, Nguzen X. Truc (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study some generalized metric properties on the hyperspace ( X ) of finite subsets of a space X endowed with the Vietoris topology. We prove that X has a point-star network consisting of (countable) w c s -covers if and only if so does ( X ) . Moreover, X has a sequence of w c s -covers with property ( P ) which is a point-star network if and only if so does ( X ) , where ( P ) is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable....

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak (2017)

Czechoslovak Mathematical Journal

Similarity:

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space ( X , d , μ ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B ( x , r ) converge to f ( x ) when r converges to 0 . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....

Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator

R.N. Rath, K.C. Panda, S.K. Rath (2022)

Archivum Mathematicum

Similarity:

In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation ( y ( t ) - i = 1 k p i ( t ) y ( r i ( t ) ) ) ( n ) + v ( t ) G ( y ( g ( t ) ) ) - u ( t ) H ( y ( h ( t ) ) ) = f ( t ) oscillates or tends to zero as t , where, n 1 is any positive integer, p i , r i C ( n ) ( [ 0 , ) , )  and p i are bounded for each i = 1 , 2 , , k . Further, f C ( [ 0 , ) , ) , g , h , v , u C ( [ 0 , ) , [ 0 , ) ) , G and H C ( , ) . The functional delays r i ( t ) t , g ( t ) t and h ( t ) t and all of them approach as t . The results hold when u 0 and f ( t ) 0 . This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature. ...

Lipschitz constants for a hyperbolic type metric under Möbius transformations

Yinping Wu, Gendi Wang, Gaili Jia, Xiaohui Zhang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let D be a nonempty open set in a metric space ( X , d ) with D . Define h D , c ( x , y ) = log 1 + c d ( x , y ) d D ( x ) d D ( y ) , where d D ( x ) = d ( x , D ) is the distance from x to the boundary of D . For every c 2 , h D , c is a metric. We study the sharp Lipschitz constants for the metric h D , c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

General position properties in fiberwise geometric topology

Taras Banakh, Vesko Valov

Similarity:

General position properties play a crucial role in geometric and infinite-dimensional topologies. Often such properties provide convenient tools for establishing various universality results. One of well-known general position properties is DDⁿ, the property of disjoint n-cells. Each Polish L C n - 1 -space X possessing DDⁿ contains a topological copy of each n-dimensional compact metric space. This fact implies, in particular, the classical Lefschetz-Menger-Nöbeling-Pontryagin-Tolstova embedding...

Extending generalized Whitney maps

Ivan Lončar (2017)

Archivum Mathematicum

Similarity:

For metrizable continua, there exists the well-known notion of a Whitney map. If X is a nonempty, compact, and metric space, then any Whitney map for any closed subset of 2 X can be extended to a Whitney map for 2 X [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.

Double weighted commutators theorem for pseudo-differential operators with smooth symbols

Yu-long Deng, Zhi-tian Chen, Shun-chao Long (2021)

Czechoslovak Mathematical Journal

Similarity:

Let - ( n + 1 ) < m - ( n + 1 ) ( 1 - ρ ) and let T a ρ , δ m be pseudo-differential operators with symbols a ( x , ξ ) n × n , where 0 < ρ 1 , 0 δ < 1 and δ ρ . Let μ , λ be weights in Muckenhoupt classes A p , ν = ( μ λ - 1 ) 1 / p for some 1 < p < . We establish a two-weight inequality for commutators generated by pseudo-differential operators T a with weighted BMO functions b BMO ν , namely, the commutator [ b , T a ] is bounded from L p ( μ ) into L p ( λ ) . Furthermore, the range of m can be extended to the whole m - ( n + 1 ) ( 1 - ρ ) .