Displaying similar documents to “On stable equivalences of module subcategories over a semiperfect noetherian ring”

Derived endo-discrete artin algebras

Raymundo Bautista (2006)

Colloquium Mathematicae

Similarity:

Let Λ be an artin algebra. We prove that for each sequence ( h i ) i of non-negative integers there are only a finite number of isomorphism classes of indecomposables X b ( Λ ) , the bounded derived category of Λ, with l e n g t h E ( X ) H i ( X ) = h i for all i ∈ ℤ and E(X) the endomorphism ring of X in b ( Λ ) if and only if b ( M o d Λ ) , the bounded derived category of the category M o d Λ of all left Λ-modules, has no generic objects in the sense of [4].

Relative tilting modules with respect to a semidualizing module

Maryam Salimi (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, and let C be a semidualizing R -module. The notion of C -tilting R -modules is introduced as the relative setting of the notion of tilting R -modules with respect to C . Some properties of tilting and C -tilting modules and the relations between them are mentioned. It is shown that every finitely generated C -tilting R -module is C -projective. Finally, we investigate some kernel subcategories related to C -tilting modules.

(Strongly) Gorenstein injective modules over upper triangular matrix Artin algebras

Chao Wang, Xiao Yan Yang (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Λ = A M 0 B be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective Λ -modules under the condition that M is a cocompatible ( A , B ) -bimodule, we establish a recollement of the stable category Ginj ( Λ ) ¯ . We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over Λ .

CF-modules over commutative rings

Ahmed Najim, Mohammed Elhassani Charkani (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a commutative ring with unit. We give some criterions for determining when a direct sum of two CF-modules over R is a CF-module. When R is local, we characterize the CF-modules over R whose tensor product is a CF-module.

Generalized tilting modules over ring extension

Zhen Zhang (2019)

Czechoslovak Mathematical Journal

Similarity:

Let Γ be a ring extension of R . We show the left Γ -module U = Γ R C with the endmorphism ring End Γ U = Δ is a generalized tilting module when R C is a generalized tilting module under some conditions.

Base change for Picard-Vessiot closures

Andy R. Magid (2011)

Banach Center Publications

Similarity:

The differential automorphism group, over F, Π₁(F₁) of the Picard-Vessiot closure F₁ of a differential field F is a proalgebraic group over the field C F of constants of F, which is assumed to be algebraically closed of characteristic zero, and its category of C F modules is equivalent to the category of differential modules over F. We show how this group and the category equivalence behave under a differential extension E ⊃ F, where C E is also algebraically closed.

Unimodular rows over Laurent polynomial rings

Abdessalem Mnif, Morou Amidou (2022)

Czechoslovak Mathematical Journal

Similarity:

We prove that for any ring 𝐑 of Krull dimension not greater than 1 and n 3 , the group E n ( 𝐑 [ X , X - 1 ] ) acts transitively on Um n ( 𝐑 [ X , X - 1 ] ) . In particular, we obtain that for any ring 𝐑 with Krull dimension not greater than 1, all finitely generated stably free modules over 𝐑 [ X , X - 1 ] are free. All the obtained results are proved constructively.

Ding projective and Ding injective modules over trivial ring extensions

Lixin Mao (2023)

Czechoslovak Mathematical Journal

Similarity:

Let R M be a trivial extension of a ring R by an R - R -bimodule M such that M R , R M , ( R , 0 ) R M and R M ( R , 0 ) have finite flat dimensions. We prove that ( X , α ) is a Ding projective left R M -module if and only if the sequence M R M R X M α M R X α X is exact and coker ( α ) is a Ding projective left R -module. Analogously, we explicitly describe Ding injective R M -modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms.

Dual modules and reflexive modules with respect to a semidualizing module

Lixin Mao (2024)

Czechoslovak Mathematical Journal

Similarity:

Let C be a semidualizing module over a commutative ring. We first investigate the properties of C -dual, C -torsionless and C -reflexive modules. Then we characterize some rings such as coherent rings, Π -coherent rings and FP-injectivity of C using C -dual, C -torsionless and C -reflexive properties of some special modules.

Rings whose nonsingular right modules are R -projective

Yusuf Alagöz, Sinem Benli, Engin Büyükaşık (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A right R -module M is called R -projective provided that it is projective relative to the right R -module R R . This paper deals with the rings whose all nonsingular right modules are R -projective. For a right nonsingular ring R , we prove that R R is of finite Goldie rank and all nonsingular right R -modules are R -projective if and only if R is right finitely Σ - C S and flat right R -modules are R -projective. Then, R -projectivity of the class of nonsingular injective right modules is also considered....

Some results on G C -flat dimension of modules

Ramalingam Udhayakumar, Intan Muchtadi-Alamsyah, Chelliah Selvaraj (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we study some properties of G C -flat R -modules, where C is a semidualizing module over a commutative ring R and we investigate the relation between the G C -yoke with the C -yoke of a module as well as the relation between the G C -flat resolution and the flat resolution of a module over G F -closed rings. We also obtain a criterion for computing the G C -flat dimension of modules.

On the structure theory of the Iwasawa algebra of a p-adic Lie group

Otmar Venjakob (2002)

Journal of the European Mathematical Society

Similarity:

This paper is motivated by the question whether there is a nice structure theory of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra, Λ of a p -adic analytic group G . For G without any p -torsion element we prove that Λ is an Auslander regular ring. This result enables us to give a good definition of the notion of a pseudo-null Λ -module. This is classical when G = p k for some integer k 1 , but was previously unknown in the non-commutative case. Then the category...

n -angulated quotient categories induced by mutation pairs

Zengqiang Lin (2015)

Czechoslovak Mathematical Journal

Similarity:

Geiss, Keller and Oppermann (2013) introduced the notion of n -angulated category, which is a “higher dimensional” analogue of triangulated category, and showed that certain ( n - 2 ) -cluster tilting subcategories of triangulated categories give rise to n -angulated categories. We define mutation pairs in n -angulated categories and prove that given such a mutation pair, the corresponding quotient category carries a natural n -angulated structure. This result generalizes a theorem of Iyama-Yoshino...

Gorenstein dimension of abelian categories arising from cluster tilting subcategories

Yu Liu, Panyue Zhou (2021)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒞 be a triangulated category and 𝒳 be a cluster tilting subcategory of 𝒞 . Koenig and Zhu showed that the quotient category 𝒞 / 𝒳 is Gorenstein of Gorenstein dimension at most one. But this is not always true when 𝒞 becomes an exact category. The notion of an extriangulated category was introduced by Nakaoka and Palu as a simultaneous generalization of exact categories and triangulated categories. Now let 𝒞 be an extriangulated category with enough projectives and enough injectives, and...

Lifting D -modules from positive to zero characteristic

João Pedro P. dos Santos (2011)

Bulletin de la Société Mathématique de France

Similarity:

We study liftings or deformations of D -modules ( D is the ring of differential operators from EGA IV) from positive characteristic to characteristic zero using ideas of Matzat and Berthelot’s theory of arithmetic D -modules. We pay special attention to the growth of the differential Galois group of the liftings. We also apply formal deformation theory (following Schlessinger and Mazur) to analyze the space of all liftings of a given D -module in positive characteristic. At the end we compare...

One-sided n -suspended categories

Jing He, Yonggang Hu, Panyue Zhou (2024)

Czechoslovak Mathematical Journal

Similarity:

For an integer n 3 , we introduce a simultaneous generalization of ( n - 2 ) -exact categories and n -angulated categories, referred to as one-sided n -suspended categories. Notably, one-sided n -angulated categories are specific instances of this structure. We establish a framework for transitioning from these generalized categories to their n -angulated counterparts. Additionally, we present a method for constructing n -angulated quotient categories from Frobenius n -prile categories. Our results unify...

On the structure of triangulated categories with finitely many indecomposables

Claire Amiot (2007)

Bulletin de la Société Mathématique de France

Similarity:

We study the problem of classifying triangulated categories with finite-dimensional morphism spaces and finitely many indecomposables over an algebraically closed field k . We obtain a new proof of the following result due to Xiao and Zhu: the Auslander-Reiten quiver of such a category 𝒯 is of the form Δ / G where Δ is a disjoint union of simply-laced Dynkin diagrams and G a weakly admissible group of automorphisms of Δ . Then we prove that for ‘most’ groups G , the category 𝒯 is standard, ...

Bipartite coalgebras and a reduction functor for coradical square complete coalgebras

Justyna Kosakowska, Daniel Simson (2008)

Colloquium Mathematicae

Similarity:

Let C be a coalgebra over an arbitrary field K. We show that the study of the category C-Comod of left C-comodules reduces to the study of the category of (co)representations of a certain bicomodule, in case C is a bipartite coalgebra or a coradical square complete coalgebra, that is, C = C₁, the second term of the coradical filtration of C. If C = C₁, we associate with C a K-linear functor C : C - C o m o d H C - C o m o d that restricts to a representation equivalence C : C - c o m o d H C - c o m o d s p , where H C is a coradical square complete hereditary...