L. V. Kantorovich and cutting-packing problems: new approaches for solving combinatorial problems of linear cutting and rectangular packing.
L’objet de cet article est d’examiner la vision des nombres telle qu’elle apparaît dans les ouvrages de S.F.Lacroix. Marqué par le génétisme sensualiste de Condillac, ce dernier sut le dépasser et bâtir ses textes, comme le recommandait d’Alembert, autour d’idées simples, issues d’une vision mathématique dégagée des débats métaphysiques. Sans prétendre construire de système philosophique, il bâtit une œuvre d’une profonde cohérence. Partant des nombres entiers et des opérations arithmétiques, il...
Une vive querelle oppose en 1874 Camille Jordan et Leopold Kronecker sur l’organisation de la théorie des formes bilinéaires, considérée comme permettant un traitement « général » et « homogène » de nombreuses questions développées dans des cadres théoriques variés au xixe siècle et dont le problème principal est reconnu comme susceptible d’être résolu par deux théorèmes énoncés indépendamment par Jordan et Weierstrass. Cette controverse, suscitée par la rencontre de deux théorèmes que nous considérerions...
La filière MASS (Mathématiques Appliquées et Sciences Sociales) comprend le DEUG MASS, (fonctionnant actuellement dans 26 Universités), la Licence MASS et la Maîtrise MASS, (présentes dans 14 Universités). Cette filière originale, pluridisciplinaire à dominante scientifique (mathématiques, statistique, informatique) existe maintenant depuis 18 ans. On en présente l'évolution et l'état actuel à différents niveaux : origines et effectifs des étudiants, orientations et débouché des diplômés, horaires...
Cet article introduit les notions de textes et d’énoncés inauguraux pour désigner les textes et les énoncés dont la fonction est d’inaugurer des représentations tenues pour conformes. Ces notions une fois définies, expliquées et discutées, on établit que La Géométrie de Descartes est un texte inaugural dont la particularité est d’inaugurer simultanément plusieurs représentations. On montre que la résolution des problèmes sémiotiques inhérents à ces inaugurations rend compte de la progression et...
Nous nous proposons de rendre à Émile Borel le mérite d’avoir considéré le premier un recouvrement d’un segment de droite par une suite infinie d’intervalles et prouvé que l’on peut en extraire un sous-recouvrement fini. L’appellation de théorème de Heine-Borel souvent donnée à ce résultat, en référence à un article de Heine de 1872, conduit à sous-estimer les différences avec le théorème sur la continuité uniforme (dont une première version peut être attribuée à Dirichlet, en 1854) ; cette dénomination...
La géométrie des nombres est un domaine des mathématiques le plus souvent caractérisé par l’utilisation de méthodes géométriques pour traiter des problèmes issus de la théorie des nombres. Mais comment identifier une méthode géométrique ? À travers les travaux de Hermann Minkowski, Louis Mordell et Harold Davenport, nous essayons de préciser quelle géométrie est en question dans leurs travaux de géométrie des nombres et comment elle intervient. Nous montrons non seulement que ce qui est considéré...
Nous nous proposons de réenvisager sous un éclairage très particulier la naissance bien connue de la dynamique classique à travers les travaux de Galilée, Huygens et Newton. Il s’agit de montrer que si les trajectoires les plus générales décrites par des corps pesants sont les coniques d’Apollonius, c’est parce que le problème de l’établissement des trajectoires a été prémathématisé par des principes généraux sous-jacents à l’étude du lien entre causes et effets. L’introduction de ces présupposés...
On reconstruit la discussion de Bourbaki sur la théorie des catégories dans les années 1950 ; les sources non publiées qui permettent cette reconstruction font partie des archives Bourbaki en France et du Nachlaß de Samuel Eilenberg, collection récemment redécouverte et depuis incorporée aux archives de la Columbia University. On étudie surtout la relation entre cette discussion et la participation de Grothendieck au projet Bourbaki. Ses travaux sur l’algèbre homologique et sur la géométrie algébrique...