Displaying 21 – 40 of 47

Showing per page

Order with successors is not interprétable in RCF

S. Świerczkowski (1993)

Fundamenta Mathematicae

Using the monotonicity theorem of L. van den Dries for RCF-definable real functions, and a further result of that author about RCF-definable equivalence relations on ℝ, we show that the theory of order with successors is not interpretable in the theory RCF. This confirms a conjecture by J. Mycielski, P. Pudlák and A. Stern.

Representations of Reals in Reverse Mathematics

Jeffry L. Hirst (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Working in the framework of reverse mathematics, we consider representations of reals as rapidly converging Cauchy sequences, decimal expansions, and two sorts of Dedekind cuts. Converting single reals from one representation to another can always be carried out in RCA₀. However, the conversion process is not always uniform. Converting infinite sequences of reals in some representations to other representations requires the use of WKL₀ or ACA₀.

Sul problema dell'autoriferimento

Ennio De Giorgi, Marco Forti, Vincenzo M. Tortorelli (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We formulate, within the frame-theory Q for the foundations of Mathematics outlined in [2], a list L of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory Q + L would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list L is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...

Trames, classifications, définitions

Daniel Parrochia (1991)

Mathématiques et Sciences Humaines

L'article part d'une analogie entre trames et partitions, définitions conceptuelles et optiques. On montre que les divisions d'un espace de concepts ressemblent souvent à celles de l'espace réel. On étudie alors quelques exemples de pavage d'un espace conceptuel (Aristote) et on compare les processus dichotomiques platoniciens (générateurs de définitions) aux filtres d'une algèbre booléenne. Par la suite, on généralise ces modèles, considérant des structures floues et des «ensembles approximatifs»...

Una lógica modal para la geometría esférica de incidencia.

Alfonso Ríder Moyano, Rafael María Rubio Ruiz (2005)

RACSAM

Habitualmente, las geometrías de incidencia están basadas en estructuras bisurtidas formadas por puntos y rectas, y conectadas por una relación entre ambas clases. En lo que sigue, introducimos una estructura monosurtida, que llamamos Marco Esférico de Incidencia, la cual resulta adecuada, para construir una base semántica que permita su consideración en el lenguaje modal. Construiremos así un sistema axiomático para dicho lenguaje, que estaría determinado por la estructura creada, es decir probaremos...

Una proposta di teorie base dei Fondamenti della Matematica

Ennio De Giorgi, Marco Forti, Giacomo Lenzi (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Vengono proposte alcune teorie base dei Fondamenti della Matematica che assumono come concetti primitivi i concetti di numero naturale, collezione, qualità, operazione e relazione; le operazioni e le relazioni considerate possono essere più o meno complesse: il numero naturale che indica il grado di complessità è detto arietà. Nelle teorie considerate è raggiunto un alto grado di autoreferenza.

Currently displaying 21 – 40 of 47