Displaying 41 – 60 of 163

Showing per page

Dual Spaces and Hahn-Banach Theorem

Keiko Narita, Noboru Endou, Yasunari Shidama (2014)

Formalized Mathematics

In this article, we deal with dual spaces and the Hahn-Banach Theorem. At the first, we defined dual spaces of real linear spaces and proved related basic properties. Next, we defined dual spaces of real normed spaces. We formed the definitions based on dual spaces of real linear spaces. In addition, we proved properties of the norm about elements of dual spaces. For the proof we referred to descriptions in the article [21]. Finally, applying theorems of the second section, we proved the Hahn-Banach...

Egoroff's Theorem

Noboru Endou, Yasunari Shidama, Keiko Narita (2008)

Formalized Mathematics

The goal of this article is to prove Egoroff's Theorem [13]. However, there are not enough theorems related to sequence of measurable functions in Mizar Mathematical Library. So we proved many theorems about them. At the end of this article, we showed Egoroff's theorem.MML identifier: MESFUNC8, version: 7.8.10 4.100.1011

Embedded Lattice and Properties of Gram Matrix

Yuichi Futa, Yasunari Shidama (2017)

Formalized Mathematics

In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm [16] and cryptographic systems with lattice [17].

Equivalent Expressions of Direct Sum Decomposition of Groups1

Kazuhisa Nakasho, Hiroyuki Okazaki, Hiroshi Yamazaki, Yasunari Shidama (2015)

Formalized Mathematics

In this article, the equivalent expressions of the direct sum decomposition of groups are mainly discussed. In the first section, we formalize the fact that the internal direct sum decomposition can be defined as normal subgroups and some of their properties. In the second section, we formalize an equivalent form of internal direct sum of commutative groups. In the last section, we formalize that the external direct sum leads an internal direct sum. We referred to [19], [18] [8] and [14] in the...

Euler’s Partition Theorem

Karol Pąk (2015)

Formalized Mathematics

In this article we prove the Euler’s Partition Theorem which states that the number of integer partitions with odd parts equals the number of partitions with distinct parts. The formalization follows H.S. Wilf’s lecture notes [28] (see also [1]). Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [27].

Evaluating many valued modus ponens

Dana Hliněná, Vladislav Biba (2012)

Kybernetika

This paper deals with many valued case of modus ponens. Cases with implicative and with clausal rules are studied. Many valued modus ponens via discrete connectives is studied with implicative rules as well as with clausal rules. Some properties of discrete modus ponens operator are given.

Event-Based Proof of the Mutual Exclusion Property of Peterson’s Algorithm

Ievgen Ivanov, Mykola Nikitchenko, Uri Abraham (2015)

Formalized Mathematics

Proving properties of distributed algorithms is still a highly challenging problem and various approaches that have been proposed to tackle it [1] can be roughly divided into state-based and event-based proofs. Informally speaking, state-based approaches define the behavior of a distributed algorithm as a set of sequences of memory states during its executions, while event-based approaches treat the behaviors by means of events which are produced by the executions of an algorithm. Of course, combined...

Events of Borel Sets, Construction of Borel Sets and Random Variables for Stochastic Finance

Peter Jaeger (2014)

Formalized Mathematics

We consider special events of Borel sets with the aim to prove, that the set of the irrational numbers is an event of the Borel sets. The set of the natural numbers, the set of the integer numbers and the set of the rational numbers are countable, so we can use the literature [10] (pp. 78-81) as a basis for the similar construction of the proof. Next we prove, that different sets can construct the Borel sets [16] (pp. 9-10). Literature [16] (pp. 9-10) and [11] (pp. 11-12) gives an overview, that...

Exponential Objects

Marco Riccardi (2015)

Formalized Mathematics

In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].

Extended Real-Valued Double Sequence and Its Convergence

Noboru Endou (2015)

Formalized Mathematics

In this article we introduce the convergence of extended realvalued double sequences [16], [17]. It is similar to our previous articles [15], [10]. In addition, we also prove Fatou’s lemma and the monotone convergence theorem for double sequences.

Fermat’s Little Theorem via Divisibility of Newton’s Binomial

Rafał Ziobro (2015)

Formalized Mathematics

Solving equations in integers is an important part of the number theory [29]. In many cases it can be conducted by the factorization of equation’s elements, such as the Newton’s binomial. The article introduces several simple formulas, which may facilitate this process. Some of them are taken from relevant books [28], [14]. In the second section of the article, Fermat’s Little Theorem is proved in a classical way, on the basis of divisibility of Newton’s binomial. Although slightly redundant in...

Finite Product of Semiring of Sets

Roland Coghetto (2015)

Formalized Mathematics

We formalize that the image of a semiring of sets [17] by an injective function is a semiring of sets.We offer a non-trivial example of a semiring of sets in a topological space [21]. Finally, we show that the finite product of a semiring of sets is also a semiring of sets [21] and that the finite product of a classical semiring of sets [8] is a classical semiring of sets. In this case, we use here the notation from the book of Aliprantis and Border [1].

First Order Languages: Further Syntax and Semantics

Marco Caminati (2011)

Formalized Mathematics

Third of a series of articles laying down the bases for classical first order model theory. Interpretation of a language in a universe set. Evaluation of a term in a universe. Truth evaluation of an atomic formula. Reassigning the value of a symbol in a given interpretation. Syntax and semantics of a non atomic formula are then defined concurrently (this point is explained in [16], 4.2.1). As a consequence, the evaluation of any w.f.f. string and the relation of logical implication are introduced....

Formalization of Generalized Almost Distributive Lattices

Adam Grabowski (2014)

Formalized Mathematics

Almost Distributive Lattices (ADL) are structures defined by Swamy and Rao [14] as a common abstraction of some generalizations of the Boolean algebra. In our paper, we deal with a certain further generalization of ADLs, namely the Generalized Almost Distributive Lattices (GADL). Our main aim was to give the formal counterpart of this structure and we succeeded formalizing all items from the Section 3 of Rao et al.’s paper [13]. Essentially among GADLs we can find structures which are neither V-commutative...

Formalization of the Advanced Encryption Standard. Part I

Kenichi Arai, Hiroyuki Okazaki (2013)

Formalized Mathematics

In this article, we formalize the Advanced Encryption Standard (AES). AES, which is the most widely used symmetric cryptosystem in the world, is a block cipher that was selected by the National Institute of Standards and Technology (NIST) as an official Federal Information Processing Standard for the United States in 2001 [12]. AES is the successor to DES [13], which was formerly the most widely used symmetric cryptosystem in the world. We formalize the AES algorithm according to [12]. We then verify...

Formulation of Cell Petri Nets

Mitsuru Jitsukawa, Pauline N. Kawamoto, Yasunari Shidama (2013)

Formalized Mathematics

Based on the Petri net definitions and theorems already formalized in the Mizar article [13], in this article we were able to formalize the definition of cell Petri nets. It is based on [12]. Colored Petri net has already been defined in [11]. In addition, the conditions of the firing rule and the colored set to this definition, that defines the cell Petri nets are further extended to CPNT.i further. The synthesis of two Petri nets was introduced in [11] and in this work the definition is extended...

Free Interpretation, Quotient Interpretation and Substitution of a Letter with a Term for First Order Languages

Marco Caminati (2011)

Formalized Mathematics

Fourth of a series of articles laying down the bases for classical first order model theory. This paper supplies a toolkit of constructions to work with languages and interpretations, and results relating them. The free interpretation of a language, having as a universe the set of terms of the language itself, is defined.The quotient of an interpreteation with respect to an equivalence relation is built, and shown to remain an interpretation when the relation respects it. Both the concepts of quotient...

Currently displaying 41 – 60 of 163