Relation entre le rang U et le poids
In this paper, we shall study type-definable groups in a simple theory with respect to one or several stable reducts. While the original motivation came from the analysis of definable groups in structures obtained by Hrushovski's amalgamation method, the notions introduced are in fact more general, and in particular can be applied to certain expansions of algebraically closed fields by operators.
In a countable superstable NDOP theory, the existence of a rigid -saturated model implies the existence of rigid -saturated models of power λ for every .
We prove a version of Hrushovski's Socle Lemma for rigid groups in an arbitrary simple theory.
We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about ϕ-types for ϕ NIP. In particular, we show that if M is a countable model, then an M-invariant ϕ-type is Borel-definable. Also, the space of M-invariant ϕ-types is a Rosenthal compactum, which implies a number of topological tameness properties.