Page 1 Next

Displaying 1 – 20 of 83

Showing per page

p -sequential like properties in function spaces

Salvador García-Ferreira, Angel Tamariz-Mascarúa (1994)

Commentationes Mathematicae Universitatis Carolinae

We introduce the properties of a space to be strictly WFU ( M ) or strictly SFU ( M ) , where M ω * , and we analyze them and other generalizations of p -sequentiality ( p ω * ) in Function Spaces, such as Kombarov’s weakly and strongly M -sequentiality, and Kocinac’s WFU ( M ) and SFU ( M ) -properties. We characterize these in C π ( X ) in terms of cover-properties in X ; and we prove that weak M -sequentiality is equivalent to WFU ( L ( M ) ) -property, where L ( M ) = { λ p : λ < ω 1 and p M } , in the class of spaces which are p -compact for every p M ω * ; and that C π ( X ) is a WFU ( L ( M ) ) -space iff X satisfies...

p -symmetric bi-capacities

Pedro Miranda, Michel Grabisch (2004)

Kybernetika

Bi-capacities have been recently introduced as a natural generalization of capacities (or fuzzy measures) when the underlying scale is bipolar. They allow to build more flexible models in decision making, although their complexity is of order 3 n , instead of 2 n for fuzzy measures. In order to reduce the complexity, the paper proposes the notion of p -symmetric bi- capacities, in the same spirit as for p -symmetric fuzzy measures. The main idea is to partition the set of criteria (or states of nature,...

Parametrized Cichoń's diagram and small sets

Janusz Pawlikowski, Ireneusz Recław (1995)

Fundamenta Mathematicae

We parametrize Cichoń’s diagram and show how cardinals from Cichoń’s diagram yield classes of small sets of reals. For instance, we show that there exist subsets N and M of w w × 2 w and continuous functions e , f : w w w w such that  • N is G δ and N x : x w w , the collection of all vertical sections of N, is a basis for the ideal of measure zero subsets of 2 w ;  • M is F σ and M x : x w w is a basis for the ideal of meager subsets of 2 w ;  • x , y N e ( x ) N y M x M f ( y ) . From this we derive that for a separable metric space X,  •if for all Borel (resp. G δ ) sets B X × 2 w with all...

Partial choice functions for families of finite sets

Eric J. Hall, Saharon Shelah (2013)

Fundamenta Mathematicae

Let m ≥ 2 be an integer. We show that ZF + “Every countable set of m-element sets has an infinite partial choice function” is not strong enough to prove that every countable set of m-element sets has a choice function, answering an open question from . (Actually a slightly stronger result is obtained.) The independence result in the case where m = p is prime is obtained by way of a permutation (Fraenkel-Mostowski) model of ZFA, in which the set of atoms (urelements) has the structure of a vector...

Partition ideals below ω

P. Dodos, J. Lopez-Abad, S. Todorcevic (2012)

Fundamenta Mathematicae

Motivated by an application to the unconditional basic sequence problem appearing in our previous paper, we introduce analogues of the Laver ideal on ℵ₂ living on index sets of the form [ k ] ω and use this to refine the well-known high-dimensional polarized partition relation for ω of Shelah.

Partition properties of subsets of Pκλ

Masahiro Shioya (1999)

Fundamenta Mathematicae

Let κ > ω be a regular cardinal and λ > κ a cardinal. The following partition property is shown to be consistent relative to a supercompact cardinal: For any f : n < ω [ X ] n γ with X P κ λ unbounded and 1 < γ < κ there is an unbounded Y ∪ X with | f ' ' [ Y ] n | = 1 for any n < ω.

Partition properties of ω1 compatible with CH

Uri Abraham, Stevo Todorčević (1997)

Fundamenta Mathematicae

A combinatorial statement concerning ideals of countable subsets of ω is introduced and proved to be consistent with the Continuum Hypothesis. This statement implies the Suslin Hypothesis, that all (ω, ω*)-gaps are Hausdorff, and that every coherent sequence on ω either almost includes or is orthogonal to some uncountable subset of ω.

Partitioning bases of topological spaces

Dániel T. Soukup, Lajos Soukup (2014)

Commentationes Mathematicae Universitatis Carolinae

We investigate whether an arbitrary base for a dense-in-itself topological space can be partitioned into two bases. We prove that every base for a T 3 Lindelöf topology can be partitioned into two bases while there exists a consistent example of a first-countable, 0-dimensional, Hausdorff space of size 2 ω and weight ω 1 which admits a point countable base without a partition to two bases.

PCA sets and convexity

R. Kaufman (2000)

Fundamenta Mathematicae

Three sets occurring in functional analysis are shown to be of class PCA (also called Σ 2 1 ) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].

Pcf theory and cardinal invariants of the reals

Lajos Soukup (2011)

Commentationes Mathematicae Universitatis Carolinae

The additivity spectrum ADD ( ) of an ideal 𝒫 ( I ) is the set of all regular cardinals κ such that there is an increasing chain { A α : α < κ } with α < κ A α . We investigate which set A of regular cardinals can be the additivity spectrum of certain ideals. Assume that = or = 𝒩 , where denotes the σ -ideal generated by the compact subsets of the Baire space ω ω , and 𝒩 is the ideal of the null sets. We show that if A is a non-empty progressive set of uncountable regular cardinals and pcf ( A ) = A , then ADD ( ) = A in some c.c.c generic extension of the...

Perfect set properties in models of ZF

Carlos Augusto Di Prisco, Franklin C. Galindo (2010)

Fundamenta Mathematicae

We study several perfect set properties of the Baire space which follow from the Ramsey property ω ( ω ) ω . In particular we present some independence results which complete the picture of how these perfect set properties relate to each other.

Perfect set theorems

Otmar Spinas (2008)

Fundamenta Mathematicae

We study splitting, infinitely often equal (ioe) and refining families from the descriptive point of view, i.e. we try to characterize closed, Borel or analytic such families by proving perfect set theorems. We succeed for G δ hereditary splitting families and for analytic countably ioe families. We construct several examples of small closed ioe and refining families.

Currently displaying 1 – 20 of 83

Page 1 Next