Displaying 101 – 120 of 173

Showing per page

The spectrum of characters of ultrafilters on ω

Saharon Shelah (2008)

Colloquium Mathematicae

We show the consistency of the statement: "the set of regular cardinals which are the characters of ultrafilters on ω is not convex". We also deal with the set of π-characters of ultrafilters on ω.

The splitting number can be smaller than the matrix chaos number

Heike Mildenberger, Saharon Shelah (2002)

Fundamenta Mathematicae

Let χ be the minimum cardinality of a subset of ω 2 that cannot be made convergent by multiplication with a single Toeplitz matrix. By an application of a creature forcing we show that < χ is consistent. We thus answer a question by Vojtáš. We give two kinds of models for the strict inequality. The first is the combination of an ℵ₂-iteration of some proper forcing with adding ℵ₁ random reals. The second kind of models is obtained by adding δ random reals to a model of M A < κ for some δ ∈ [ℵ₁,κ). It...

The stability of parameter estimation of fuzzy variables

Dug Hun Hong (2009)

Kybernetika

Recently, the parameter estimations for normal fuzzy variables in the Nahmias’ sense was studied by Cai [4]. These estimates were also studied for general T -related, but not necessarily normal fuzzy variables by Hong [10] In this paper, we report on some properties of estimators that would appear to be desirable, including unbiasedness. We also consider asymptotic or “large-sample” properties of a particular type of estimator.

The strength of the projective Martin conjecture

C. T. Chong, Wei Wang, Liang Yu (2010)

Fundamenta Mathematicae

We show that Martin’s conjecture on Π¹₁ functions uniformly T -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant Π ¹ 2 n + 1 functions is equivalent over ZFC to Σ ¹ 2 n + 2 -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.

The study of the L-fuzzy concept lattice.

Ana Burusco Juandeaburre, Ramón Fuentes-González (1994)

Mathware and Soft Computing

The L-Fuzzy concept theory that we have developed sets up classifications from the objects and attributes of a context through L-Fuzzy relations. This theory generalizes the formal concept theory of R. Wille. In this paper we begin with the L-Fuzzy concept definition that generalizes the definitions of the formal concept theory, and we study the lattice structure of the L-Fuzzy concept set, giving a constructive method for calculating this lattice. At the end, we apply this constructive method to...

The study on semicopula based implications

Zuming Peng (2020)

Kybernetika

Recently, Baczyński et al. (2017) proposed a new family of implication operators called semicopula based implications, which combines a given a priori fuzzy implication and a semicopula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy implication and the semicopula based implication are analyzed. Secondly, the conditions such that the semicopula based implication is a fuzzy implication are studied, the study is carried out mainly in the case that the semicopula...

The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II

Yasushi Hirata (2015)

Commentationes Mathematicae Universitatis Carolinae

In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) p -spaces, (strong) Σ -spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having G δ -diagonals and for the extent of spaces having point-countable bases...

The sup = max problem for the extent of generalized metric spaces

Yasushi Hirata, Yukinobu Yajima (2013)

Commentationes Mathematicae Universitatis Carolinae

It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.

The tree property at both ω + 1 and ω + 2

Laura Fontanella, Sy David Friedman (2015)

Fundamenta Mathematicae

We force from large cardinals a model of ZFC in which ω + 1 and ω + 2 both have the tree property. We also prove that if we strengthen the large cardinal assumptions, then in the final model ω + 2 even satisfies the super tree property.

The tree property at the double successor of a measurable cardinal κ with 2 κ large

Sy-David Friedman, Ajdin Halilović (2013)

Fundamenta Mathematicae

Assuming the existence of a λ⁺-hypermeasurable cardinal κ, where λ is the first weakly compact cardinal above κ, we prove that, in some forcing extension, κ is still measurable, κ⁺⁺ has the tree property and 2 κ = κ . If the assumption is strengthened to the existence of a θ -hypermeasurable cardinal (for an arbitrary cardinal θ > λ of cofinality greater than κ) then the proof can be generalized to get 2 κ = θ .

The Tree Property at ω₂ and Bounded Forcing Axioms

Sy-David Friedman, Víctor Torres-Pérez (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that the Tree Property at ω₂ together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω₂ together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a Mahlo cardinal....

The uniqueness of Haar measure and set theory

Piotr Zakrzewski (1997)

Colloquium Mathematicae

Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits of all points...

Currently displaying 101 – 120 of 173