Displaying 41 – 60 of 708

Showing per page

A representation theorem for tense n × m -valued Łukasiewicz-Moisil algebras

Aldo Victorio Figallo, Gustavo Pelaitay (2015)

Mathematica Bohemica

In 2000, Figallo and Sanza introduced n × m -valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of n -valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class tLM n × m of tense n × m -valued Łukasiewicz-Moisil algebras (or tense LM n × m -algebras), namely n × m -valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense Łukasiewicz-Moisil algebras...

A short note on lattices allowing disjunctive reasoning.

Enric Trillas, Eloy Renedo, Claudi Alsina (2006)

Mathware and Soft Computing

This short note shows that the scheme of disjunctive reasoning, a or b, not b : a, does not hold neither in proper ortholattices nor in proper de Morgan algebras. In both cases the scheme, once translated into the inequality b' · (a+b) ≤ a, forces the structure to be a boolean algebra.

A spectral theorem for σ MV-algebras

Sylvia Pulmannová (2005)

Kybernetika

MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for σ -MV-algebras, we prove that, with every element a in a σ -MV algebra M , a spectral measure (i. e. an observable) Λ a : ( [ 0 , 1 ] ) ( M ) can be associated, where ( M ) denotes the Boolean σ -algebra...

A theory of refinement structure of hedge algebras and its applications to fuzzy logic

Nguyen Ho, Huynh Nam (1999)

Banach Center Publications

In [13], an algebraic approach to the natural structure of domains of linguistic variables was introduced. In this approach, every linguistic domain can be interpreted as an algebraic structure called a hedge algebra. In this paper, a refinement structure of hedge algebras based on free distributive lattices generated by linguistic hedge operations will be examined in order to model structure of linguistic domains more properly. In solving this question, we restrict our consideration to the specific...

A topological duality for the F -chains associated with the logic C ω

Verónica Quiroga, Víctor Fernández (2017)

Mathematica Bohemica

In this paper we present a topological duality for a certain subclass of the F ω -structures defined by M. M. Fidel, which conform to a non-standard semantics for the paraconsistent N. C. A. da Costa logic C ω . Actually, the duality introduced here is focused on F ω -structures whose supports are chains. For our purposes, we characterize every F ω -chain by means of a new structure that we will call down-covered chain (DCC) here. This characterization will allow us to prove the dual equivalence between the...

Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra

Jānis Cīrulis (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let A : = ( A , , 1 ) be a Hilbert algebra. The monoid of all unary operations on A generated by operations α p : x ( p x ) , which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of A . This semilattice is isomorphic to the semilattice of finitely generated filters of A , it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of A . Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of A , and the...

Aggregation operators on partially ordered sets and their categorical foundations

Mustafa Demirci (2006)

Kybernetika

In spite of increasing studies and investigations in the field of aggregation operators, there are two fundamental problems remaining unsolved: aggregation of L -fuzzy set-theoretic notions and their justification. In order to solve these problems, we will formulate aggregation operators and their special types on partially ordered sets with universal bounds, and introduce their categories. Furthermore, we will show that there exists a strong connection between the category of aggregation operators...

Alcune proprietà delle algebre di Boole principali

Francesco Lacava (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper some properties of principal Boolean algebras are studied.

Algebraic axiomatization of tense intuitionistic logic

Ivan Chajda (2011)

Open Mathematics

We introduce two unary operators G and H on a relatively pseudocomplemented lattice which form an algebraic axiomatization of the tense quantifiers “it is always going to be the case that” and “it has always been the case that”. Their axiomatization is an extended version for the classical logic and it is in accordance with these operators on many-valued Łukasiewicz logic. Finally, we get a general construction of these tense operators on complete relatively pseudocomplemented lattice which is a...

Currently displaying 41 – 60 of 708