Displaying 81 – 100 of 708

Showing per page

Archimedean atomic lattice effect algebras in which all sharp elements are central

Zdena Riečanová (2006)

Kybernetika

We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.

Associative n -dimensional copulas

Andrea Stupňanová, Anna Kolesárová (2011)

Kybernetika

The associativity of n -dimensional copulas in the sense of Post is studied. These copulas are shown to be just n -ary extensions of associative 2-dimensional copulas with special constraints, thus they solve an open problem of R. Mesiar posed during the International Conference FSTA 2010 in Liptovský Ján, Slovakia.

Atomicity of lattice effect algebras and their sub-lattice effect algebras

Jan Paseka, Zdena Riečanová (2009)

Kybernetika

We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions...

Automorphisms of concrete logics

Mirko Navara, Josef Tkadlec (1991)

Commentationes Mathematicae Universitatis Carolinae

The main result of this paper is Theorem 3.3: Every concrete logic (i.e., every set-representable orthomodular poset) can be enlarged to a concrete logic with a given automorphism group and with a given center. Since every sublogic of a concrete logic is concrete, too, and since not every state space of a (general) quantum logic is affinely homeomorphic to the state space of a concrete logic [8], our result seems in a sense the best possible. Further, we show that every group is an automorphism...

Axiomatizing quantum MV-algebras.

Roberto Giuntini (1997)

Mathware and Soft Computing

We introduce the notion of p-ideal of a QMV-algebra and we prove that the class of all p-ideals of a QMV-algebra M is in one-to-one correspondence with the class of all congruence relations of M.

Basic pseudorings

Ivan Chajda, Miroslav Kolařík (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The concept of a basic pseudoring is introduced. It is shown that every orthomodular lattice can be converted into a basic pseudoring by using of the term operation called Sasaki projection. It is given a mutual relationship between basic algebras and basic pseudorings. There are characterized basic pseudorings which can be converted into othomodular lattices.

bi-BL-algebra

Mahdeieh Abbasloo, Arsham Borumand Saeid (2011)

Discussiones Mathematicae - General Algebra and Applications

In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.

Boolean differential operators

Jorge Catumba, Rafael Díaz (2014)

Commentationes Mathematicae Universitatis Carolinae

We consider four combinatorial interpretations for the algebra of Boolean differential operators and construct, for each interpretation, a matrix representation for the algebra of Boolean differential operators.

Currently displaying 81 – 100 of 708