Displaying 501 – 520 of 849

Showing per page

The reciprocal super Catalan matrix

Helmut Prodinger (2015)

Special Matrices

The reciprocal super Catalan matrix has entries [...] . Explicit formulæ for its LU-decomposition, the LU-decomposition of its inverse, and some related matrices are obtained. For all results, q-analogues are also presented.

The relation between the number of leaves of a tree and its diameter

Pu Qiao, Xingzhi Zhan (2022)

Czechoslovak Mathematical Journal

Let L ( n , d ) denote the minimum possible number of leaves in a tree of order n and diameter d . Lesniak (1975) gave the lower bound B ( n , d ) = 2 ( n - 1 ) / d for L ( n , d ) . When d is even, B ( n , d ) = L ( n , d ) . But when d is odd, B ( n , d ) is smaller than L ( n , d ) in general. For example, B ( 21 , 3 ) = 14 while L ( 21 , 3 ) = 19 . In this note, we determine L ( n , d ) using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves.

The representation of multi-hypergraphs by set intersections

Stanisław Bylka, Jan Komar (2007)

Discussiones Mathematicae Graph Theory

This paper deals with weighted set systems (V,,q), where V is a set of indices, 2 V and the weight q is a nonnegative integer function on . The basic idea of the paper is to apply weighted set systems to formulate restrictions on intersections. It is of interest to know whether a weighted set system can be represented by set intersections. An intersection representation of (V,,q) is defined to be an indexed family R = ( R v ) v V of subsets of a set S such that | v E R v | = q ( E ) for each E ∈ . A necessary condition for the existence...

The ring of multisymmetric functions

Francesco Vaccarino (2005)

Annales de l’institut Fourier

We give a presentation (in terms of generators and relations) of the ring of multisymmetric functions that holds for any commutative ring R , thereby answering a classical question coming from works of F. Junker [J1, J2, J3] in the late nineteen century and then implicitly in H. Weyl book “The classical groups” [W].

The Ryjáček Closure and a Forbidden Subgraph

Akira Saito, Liming Xiong (2016)

Discussiones Mathematicae Graph Theory

The Ryjáček closure is a powerful tool in the study of Hamiltonian properties of claw-free graphs. Because of its usefulness, we may hope to use it in the classes of graphs defined by another forbidden subgraph. In this note, we give a negative answer to this hope, and show that the claw is the only forbidden subgraph that produces non-trivial results on Hamiltonicity by the use of the Ryjáček closure.

The Saturation Number for the Length of Degree Monotone Paths

Yair Caro, Josef Lauri, Christina Zarb (2015)

Discussiones Mathematicae Graph Theory

A degree monotone path in a graph G is a path P such that the sequence of degrees of the vertices in the order in which they appear on P is monotonic. The length (number of vertices) of the longest degree monotone path in G is denoted by mp(G). This parameter, inspired by the well-known Erdős- Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter mp(G). We call G saturated if, for every edge e added to G, mp(G + e) > mp(G),...

Currently displaying 501 – 520 of 849