Displaying 601 – 620 of 719

Showing per page

Star Coloring of Subcubic Graphs

T. Karthick, C.R. Subramanian (2013)

Discussiones Mathematicae Graph Theory

A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.

Stationary map coloring

Omer Angel, Itai Benjamini, Ori Gurel-Gurevich, Tom Meyerovitch, Ron Peled (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6 colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that the 6-core of the corresponding Delaunay triangulation is empty. Generalizations, extensions and some open questions are discussed.

Strong Chromatic Index Of Planar Graphs With Large Girth

Gerard Jennhwa Chang, Mickael Montassier, Arnaud Pêche, André Raspaud (2014)

Discussiones Mathematicae Graph Theory

Let Δ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree Δ and girth at least 1 Δ+46 is strong (2Δ−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree Δ. This improves [6] when Δ ≥ 6.

Sum List Edge Colorings of Graphs

Arnfried Kemnitz, Massimiliano Marangio, Margit Voigt (2016)

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with |L(e)| = f(e) for all e ∈ E. Set size(f) = ∑e∈E f(e) and define the sum choice index χ′sc(G) as the minimum of size(f) over all edge...

T -preserving homomorphisms of oriented graphs

Jaroslav Nešetřil, Eric Sopena, Laurence Vignal (1997)

Commentationes Mathematicae Universitatis Carolinae

A homomorphism of an oriented graph G = ( V , A ) to an oriented graph G ' = ( V ' , A ' ) is a mapping ϕ from V to V ' such that ϕ ( u ) ϕ ( v ) is an arc in G ' whenever u v is an arc in G . A homomorphism of G to G ' is said to be T -preserving for some oriented graph T if for every connected subgraph H of G isomorphic to a subgraph of T , H is isomorphic to its homomorphic image in G ' . The T -preserving oriented chromatic number χ T ( G ) of an oriented graph G is the minimum number of vertices in an oriented graph G ' such that there exists a T -preserving...

The 1 , 2 , 3-Conjecture And 1 , 2-Conjecture For Sparse Graphs

Daniel W. Cranston, Sogol Jahanbekam, Douglas B. West (2014)

Discussiones Mathematicae Graph Theory

The 1, 2, 3-Conjecture states that the edges of a graph without isolated edges can be labeled from {1, 2, 3} so that the sums of labels at adjacent vertices are distinct. The 1, 2-Conjecture states that if vertices also receive labels and the vertex label is added to the sum of its incident edge labels, then adjacent vertices can be distinguished using only {1, 2}. We show that various configurations cannot occur in minimal counterexamples to these conjectures. Discharging then confirms the conjectures...

The 3-Rainbow Index of a Graph

Lily Chen, Xueliang Li, Kang Yang, Yan Zhao (2015)

Discussiones Mathematicae Graph Theory

Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ ℕ, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of V (G) is called the k-rainbow index of G, denoted by rxk(G). In this paper,...

The Balanced Decomposition Number of TK4 and Series-Parallel Graphs

Shinya Fujita, Henry Liu (2013)

Discussiones Mathematicae Graph Theory

A balanced colouring of a graph G is a colouring of some of the vertices of G with two colours, say red and blue, such that there is the same number of vertices in each colour. The balanced decomposition number f(G) of G is the minimum integer s with the following property: For any balanced colouring of G, there is a partition V (G) = V1 ∪˙ · · · ∪˙ Vr such that, for every i, Vi induces a connected subgraph of order at most s, and contains the same number of red and blue vertices. The function f(G)...

Currently displaying 601 – 620 of 719