-colour partitions of acyclic tournaments.
Let D be a digraph. D is said to be an m-colored digraph if the arcs of D are colored with m colors. A path P in D is called monochromatic if all of its arcs are colored alike. Let D be an m-colored digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths of D if it satisfies the following conditions: a) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them; and b) for every vertex x ∈ V(D)-N there is a vertex n ∈ N such that there is an xn-monochromatic...
For a digraph D, V (D) and A(D) will denote the sets of vertices and arcs of D respectively. In an arc-colored digraph, a subset K of V(D) is said to be kernel by monochromatic paths (mp-kernel) if (1) for any two different vertices x, y in N there is no monochromatic directed path between them (N is mp-independent) and (2) for each vertex u in V (D) N there exists v ∈ N such that there is a monochromatic directed path from u to v in D (N is mp-absorbent). If every arc in D has a different color,...
An m-colored digraph is a digraph whose arcs are colored with m colors. A directed path is monochromatic when its arcs are colored alike. A set S ⊆ V(D) is a kernel by monochromatic paths whenever the two following conditions hold: 1. For any x,y ∈ S, x ≠ y, there is no monochromatic directed path between them. 2. For each z ∈ (V(D)-S) there exists a zS-monochromatic directed path. In this paper it is introduced the concept of color-class...
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions (i) for every pair of different vertices u, v ∈ N there is no monochromatic directed path between them and (ii) for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-monochromatic...
We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. Let D be an m-coloured digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and (ii) for each vertex x ∈ (V(D)-N) there...
Let D be a digraph with V(D) and A(D) the sets of vertices and arcs of D, respectively. A kernel of D is a set I ⊂ V(D) such that no arc of D joins two vertices of I and for each x ∈ V(D)∖I there is a vertex y ∈ I such that (x,y) ∈ A(D). A digraph is kernel-perfect if every non-empty induced subdigraph of D has a kernel. If D is edge coloured, we define the closure ξ(D) of D the multidigraph with V(ξ(D)) = V(D) and Let T₃ and C₃ denote the transitive tournament of order 3 and the 3-cycle, respectively,...
Let D be a digraph. V(D) denotes the set of vertices of D; a set N ⊆ V(D) is said to be a k-kernel of D if it satisfies the following two conditions: for every pair of different vertices u,v ∈ N it holds that every directed path between them has length at least k and for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-directed path of length at most k-1. In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed by these...
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N, u ≠ v, then d(u,v), d(v,u) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. Quasi-transitive, right-pretransitive and left-pretransitive digraphs are generalizations of transitive digraphs. In this paper the following results are proved: Let D be a...
A digraph D is said to satisfy the k-Meyniel's condition if each odd directed cycle of D has at least k diagonals. The study of the k-Meyniel's condition has been a source of many interesting problems, questions and results in the development of Kernel Theory. In this paper we present a method to construct a large variety of kernel-perfect (resp. critical kernel-imperfect) digraphs which satisfy the k-Meyniel's condition.