Displaying 21 – 40 of 428

Showing per page

Algebraic tools for the construction of colored flows with boundary constraints

Marius Dorkenoo, Marie-Christine Eglin-Leclerc, Eric Rémila (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We give a linear time algorithm which, given a simply connected figure of the plane divided into cells, whose boundary is crossed by some colored inputs and outputs, produces non-intersecting directed flow lines which match inputs and outputs according to the colors, in such a way that each edge of any cell is crossed by at most one line. The main tool is the notion of height function, previously introduced for tilings. It appears as an extension of the notion of potential of a flow in a planar...

Algebraic tools for the construction of colored flows with boundary constraints

Marius Dorkenoo, Marie-Christine Eglin-Leclerc, Eric Rémila (2010)

RAIRO - Theoretical Informatics and Applications

We give a linear time algorithm which, given a simply connected figure of the plane divided into cells, whose boundary is crossed by some colored inputs and outputs, produces non-intersecting directed flow lines which match inputs and outputs according to the colors, in such a way that each edge of any cell is crossed by at most one line. The main tool is the notion of height function, previously introduced for tilings. It appears as an extension of the notion of potential of a flow in...

Algorithms for Finding Unitals and Maximal Arcs in Projective Planes of Order 16

Stoichev, Stoicho (2007)

Serdica Journal of Computing

The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakalo ff , Sofia, July, 2006.Two heuristic algorithms (M65 and M52) for finding respectively unitals and maximal arcs in projective planes of order 16 are described. The exact algorithms based on exhaustive search are impractical because of the combinatorial explosion (huge number of combinations to be checked). Algorithms M65 and M52 use unions of orbits...

Amenable groups and cellular automata

Tullio G. Ceccherini-Silberstein, Antonio Machi, Fabio Scarabotti (1999)

Annales de l'institut Fourier

We show that the theorems of Moore and Myhill hold for cellular automata whose universes are Cayley graphs of amenable finitely generated groups. This extends the analogous result of A. Machi and F. Mignosi “Garden of Eden configurations for cellular automata on Cayley graphs of groups” for groups of sub-exponential growth.

Antisymmetric flows and strong colourings of oriented graphs

J. Nešetřill, André Raspaud (1999)

Annales de l'institut Fourier

The homomorphisms of oriented or undirected graphs, the oriented chromatic number, the relationship between acyclic colouring number and oriented chromatic number, have been recently intensely studied. For the purpose of duality, we define the notions of strong-oriented colouring and antisymmetric-flow. An antisymmetric-flow is a flow with values in an additive abelian group which uses no opposite elements of the group. We prove that the strong-oriented chromatic number χ s (as the modular version...

Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups

Mehdi Alaeiyan (2006)

Discussiones Mathematicae Graph Theory

Let G be a finite group, and let 1 G S G . A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x,y ∈ G, the pair (x,y) is an arc if and only if y x - 1 S . Further, if S = S - 1 : = s - 1 | s S , then Γ is undirected. Γ is conected if and only if G = ⟨s⟩. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a normal subgroup of the automorphism group of Γ. A graph Γ is said to be arc-transitive, if Aut(Γ) is transitive on an arc set. Also, a graph Γ...

Currently displaying 21 – 40 of 428