Displaying 261 – 280 of 667

Showing per page

Highly connected counterexamples to a conjecture on α-domination

Zsolt Tuza (2005)

Discussiones Mathematicae Graph Theory

An infinite class of counterexamples is given to a conjecture of Dahme et al. [1] concerning the minimum size of a dominating vertex set that contains at least a prescribed proportion of the neighbors of each vertex not belonging to the set.

(H,k) stable bipartite graphs with minimum size

Aneta Dudek, Małgorzata Zwonek (2009)

Discussiones Mathematicae Graph Theory

Let us call a graph G(H;k) vertex stable if it contains a subgraph H after removing any of its k vertices. In this paper we are interested in finding the ( K n , n + 1 ; 1 ) (respectively ( K n , n ; 1 ) ) vertex stable graphs with minimum size.

(H,k) stable graphs with minimum size

Aneta Dudek, Artur Szymański, Małgorzata Zwonek (2008)

Discussiones Mathematicae Graph Theory

Let us call a G (H,k) graph vertex stable if it contains a subgraph H ever after removing any of its k vertices. By Q(H,k) we will denote the minimum size of an (H,k) vertex stable graph. In this paper, we are interested in finding Q(₃,k), Q(₄,k), Q ( K 1 , p , k ) and Q(Kₛ,k).

Holes in graphs.

Peng, Yuejian, Rödl, Vojtech, Ruciński, Andrzej (2002)

The Electronic Journal of Combinatorics [electronic only]

Independent cycles and paths in bipartite balanced graphs

Beata Orchel, A. Paweł Wojda (2008)

Discussiones Mathematicae Graph Theory

Bipartite graphs G = (L,R;E) and H = (L’,R’;E’) are bi-placeabe if there is a bijection f:L∪R→ L’∪R’ such that f(L) = L’ and f(u)f(v) ∉ E’ for every edge uv ∈ E. We prove that if G and H are two bipartite balanced graphs of order |G| = |H| = 2p ≥ 4 such that the sizes of G and H satisfy ||G|| ≤ 2p-3 and ||H|| ≤ 2p-2, and the maximum degree of H is at most 2, then G and H are bi-placeable, unless G and H is one of easily recognizable couples of graphs. This result implies easily that for integers...

Induced-paired domatic numbers of graphs

Bohdan Zelinka (2002)

Mathematica Bohemica

A subset D of the vertex set V ( G ) of a graph G is called dominating in G , if each vertex of G either is in D , or is adjacent to a vertex of D . If moreover the subgraph < D > of G induced by D is regular of degree 1, then D is called an induced-paired dominating set in G . A partition of V ( G ) , each of whose classes is an induced-paired dominating set in G , is called an induced-paired domatic partition of G . The maximum number of classes of an induced-paired domatic partition of G is the induced-paired domatic...

Currently displaying 261 – 280 of 667