Displaying 281 – 300 of 667

Showing per page

Linear forests and ordered cycles

Guantao Chen, Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson, Linda Lesniak, Florian Pfender (2004)

Discussiones Mathematicae Graph Theory

A collection L = P ¹ P ² . . . P t (1 ≤ t ≤ k) of t disjoint paths, s of them being singletons with |V(L)| = k is called a (k,t,s)-linear forest. A graph G is (k,t,s)-ordered if for every (k,t,s)-linear forest L in G there exists a cycle C in G that contains the paths of L in the designated order as subpaths. If the cycle is also a hamiltonian cycle, then G is said to be (k,t,s)-ordered hamiltonian. We give sharp sum of degree conditions for nonadjacent vertices that imply a graph is (k,t,s)-ordered hamiltonian.

Location-domatic number of a graph

Bohdan Zelinka (1998)

Mathematica Bohemica

A subset D of the vertex set V ( G ) of a graph G is called locating-dominating, if for each x V ( G ) - D there exists a vertex y D adjacent to x and for any two distinct vertices x 1 , x 2 of V ( G ) - D the intersections of D with the neighbourhoods of x 1 and x 2 are distinct. The maximum number of classes of a partition of V ( G ) whose classes are locating-dominating sets in G is called the location-domatic number of G . Its basic properties are studied.

Lower bounds for integral functionals generated by bipartite graphs

Barbara Kaskosz, Lubos Thoma (2019)

Czechoslovak Mathematical Journal

We study lower estimates for integral fuctionals for which the structure of the integrand is defined by a graph, in particular, by a bipartite graph. Functionals of such kind appear in statistical mechanics and quantum chemistry in the context of Mayer's transformation and Mayer's cluster integrals. Integral functionals generated by graphs play an important role in the theory of graph limits. Specific kind of functionals generated by bipartite graphs are at the center of the famous and much studied...

Currently displaying 281 – 300 of 667