Odd cycles and a class of facets of the axial 3-index assignment polytope
We deal with the graph operator defined to be the complement of the square of a graph: . Motivated by one of many open problems formulated in [6] we look for graphs that are 2-periodic with respect to this operator. We describe a class of bipartite graphs possessing the above mentioned property and prove that for any m,n ≥ 6, the complete bipartite graph can be decomposed in two edge-disjoint factors from . We further show that all the incidence graphs of Desarguesian finite projective geometries...
In this paper the following theorem is proved: Let be a connected graph of order and let be a matching in . Then there exists a hamiltonian cycle of such that .
In 1995, F. Jaeger and M.-C. Heydemann began to work on a conjecture on binary operations which are related to homomorphisms of De Bruijn digraphs. For this, they have considered the class of digraphs such that for any integer , has exactly walks of length , where is the order of . Recently, C. Delorme has obtained some results on the original conjecture. The aim of this paper is to recall the conjecture and to report where all the authors arrived.
A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n₁,...,nₖ) of positive integers such that , there exists a partition (V₁,...,Vₖ) of vertex set of G such that for every i ∈ 1,...,k the set induces a connected subgraph of G on vertices. We consider arbitrarily vertex decomposable unicyclic graphs with dominating cycle. We also characterize all such graphs with at most four hanging vertices such that exactly two of them have a common neighbour.