De Bruijn cycles and their application for encoding of discrete positions
The complete tripartite graph has edges. For any collection of positive integers with and for , we exhibit an edge-disjoint decomposition of into closed trails (circuits) of lengths .
Let denote the set of all lengths of closed trails that exist in an even graph . A sequence of elements of adding up to is -realisable provided there is a sequence of pairwise edge-disjoint closed trails in such that is of length for . The graph is arbitrarily decomposable into closed trails if all possible sequences are -realisable. In the paper it is proved that if is an odd integer and is a perfect matching in , then the graph is arbitrarily decomposable into closed...
We give necessary and sufficient conditions for the decomposition of complete bipartite multigraph Km,n(λ) into paths and cycles having k edges. In particular, we show that such decomposition exists in Km,n(λ), when λ ≡ 0 (mod 2), [...] and k(p + q) = 2mn for k ≡ 0 (mod 2) and also when λ ≥ 3, λm ≡ λn ≡ 0(mod 2), k(p + q) =λ_mn, m, n ≥ k, (resp., m, n ≥ 3k/2) for k ≡ 0(mod 4) (respectively, for k ≡ 2(mod 4)). In fact, the necessary conditions given above are also sufficient when λ = 2.
In this note, we consider the problem of existence of an edge-decomposition of a multigraph into isomorphic copies of 2-edge paths . We find necessary and sufficient conditions for such a decomposition of a multigraph H to exist when (i) either H does not have incident multiple edges or (ii) multiplicities of the edges in H are not greater than two. In particular, we answer a problem stated by Z. Skupień.
It is proved that a connected multigraph G which is the union of two edge-disjoint paths has another decomposition into two paths with the same set, U, of endvertices provided that the multigraph is neither a path nor cycle. Moreover, then the number of such decompositions is proved to be even unless the number is three, which occurs exactly if G is a tree homeomorphic with graph of either symbol + or ⊥. A multigraph on n vertices with exactly two traceable pairs is constructed for each n ≥ 3. The...
For n ≥ 4, the complete n-vertex multidigraph with arc multiplicity λ is proved to have a decomposition into directed paths of arbitrarily prescribed lengths ≤ n - 1 and different from n - 2, unless n = 5, λ = 1, and all lengths are to be n - 1 = 4. For λ = 1, a more general decomposition exists; namely, up to five paths of length n - 2 can also be prescribed.
In a given graph G = (V,E), a set of vertices S with an assignment of colors to them is said to be a defining set of the vertex coloring of G, if there exists a unique extension of the colors of S to a c ≥ χ(G) coloring of the vertices of G. A defining set with minimum cardinality is called a minimum defining set and its cardinality is the defining number, denoted by d(G,c). The d(G = Cₘ × Kₙ, χ(G)) has been studied. In this note we show that the exact value of defining number d(G = Cₘ × Kₙ, c)...
Let , and be a non-increasing sequence of nonnegative integers. If has a realization with vertex set such that for and is a cycle of length in , then is said to be potentially -graphic. In this paper, we give a characterization for to be potentially -graphic.
The line graph of a graph , denoted by , has as its vertex set, where two vertices in are adjacent if and only if the corresponding edges in have a vertex in common. For a graph , define . Let be a 2-connected claw-free simple graph of order with . We show that, if and is sufficiently large, then either is traceable or the Ryjáček’s closure , where is an essentially -edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10 which have...
A graph G of order n is called arbitrarily partitionable (AP for short) if, for every sequence (n1, . . . , nk) of positive integers with n1 + ⋯ + nk = n, there exists a partition (V1, . . . , Vk) of the vertex set V (G) such that Vi induces a connected subgraph of order ni for i = 1, . . . , k. In this paper we show that every connected graph G of order n ≥ 22 and with [...] ‖G‖ > (n−42)+12 edges is AP or belongs to few classes of exceptional graphs.
The nth detour chromatic number, χₙ(G) of a graph G is the minimum number of colours required to colour the vertices of G such that no path with more than n vertices is monocoloured. The number of vertices in a longest path of G is denoted by τ( G). We conjecture that χₙ(G) ≤ ⎡(τ(G))/n⎤ for every graph G and every n ≥ 1 and we prove results that support the conjecture. We also present some sufficient conditions for a graph to have nth chromatic number at most 2.