Centers and centroids of unicyclic graphs
Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper u − v path of length d(u, v), then P is a proper u − v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u − v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u− v geodesic in G. The minimum number of...
The well-known Chvátal-Erdős theorem states that if the stability number α of a graph G is not greater than its connectivity then G is hamiltonian. In 1974 Erdős showed that if, additionally, the order of the graph is sufficiently large with respect to α, then G is pancyclic. His proof is based on the properties of cycle-complete graph Ramsey numbers. In this paper we show that a similar result can be easily proved by applying only classical Ramsey numbers.
The cycle space of a strongly connected graph has a basis consisting of directed circuits. The concept of relevant circuits is introduced as a generalization of the relevant cycles in undirected graphs. A polynomial time algorithm for the computation of a minimum weight directed circuit basis is outlined.
Circular distance between two vertices , of a strongly connected directed graph is the sum , where is the usual distance in digraphs. Its basic properties are studied.
The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices = x₁, x₂, ...,xₖ in a simple graph G, the closed k-stop-distance of set is defined to be , where () is the set of all permutations from...
We show that the problem of finding the family of all so called the locally reducible factors in the binary de Bruijn graph of order k is equivalent to the problem of finding all colourings of edges in the binary de Bruijn graph of order k-1, where each vertex belongs to exactly two cycles of different colours. In this paper we define and study such colouring for the greater class of the de Bruijn graphs in order to define a class of so called regular factors, which is not so difficult to construct....
Two spanning trees T1 and T2 of a graph G are completely independent if, for any two vertices u and v, the paths from u to v in T1 and T2 are internally disjoint. For a graph G, we denote the maximum number of pairwise completely independent spanning trees by cist(G). In this paper, we consider cist(G) when G is a partial k-tree. First we show that [k/2] ≤ cist(G) ≤ k − 1 for any k-tree G. Then we show that for any p ∈ {[k/2], . . . , k − 1}, there exist infinitely many k-trees G such that cist(G)...
We prove a necessary and sufficient condition under which a connected graph has a connected P₃-path graph. Moreover, an analogous condition for connectivity of the Pₖ-path graph of a connected graph which does not contain a cycle of length smaller than k+1 is derived.