Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Characterizations of Graphs Having Large Proper Connection Numbers

Chira Lumduanhom, Elliot Laforge, Ping Zhang (2016)

Discussiones Mathematicae Graph Theory

Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper u − v path of length d(u, v), then P is a proper u − v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u − v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u− v geodesic in G. The minimum number of...

Chvátal-Erdos condition and pancyclism

Evelyne Flandrin, Hao Li, Antoni Marczyk, Ingo Schiermeyer, Mariusz Woźniak (2006)

Discussiones Mathematicae Graph Theory

The well-known Chvátal-Erdős theorem states that if the stability number α of a graph G is not greater than its connectivity then G is hamiltonian. In 1974 Erdős showed that if, additionally, the order of the graph is sufficiently large with respect to α, then G is pancyclic. His proof is based on the properties of cycle-complete graph Ramsey numbers. In this paper we show that a similar result can be easily proved by applying only classical Ramsey numbers.

Circuit bases of strongly connected digraphs

Petra M. Gleiss, Josef Leydold, Peter F. Stadler (2003)

Discussiones Mathematicae Graph Theory

The cycle space of a strongly connected graph has a basis consisting of directed circuits. The concept of relevant circuits is introduced as a generalization of the relevant cycles in undirected graphs. A polynomial time algorithm for the computation of a minimum weight directed circuit basis is outlined.

Circular distance in directed graphs

Bohdan Zelinka (1997)

Mathematica Bohemica

Circular distance d ( x , y ) between two vertices x , y of a strongly connected directed graph G is the sum d ( x , y ) + d ( y , x ) , where d is the usual distance in digraphs. Its basic properties are studied.

Closed k-stop distance in graphs

Grady Bullington, Linda Eroh, Ralucca Gera, Steven J. Winters (2011)

Discussiones Mathematicae Graph Theory

The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices = x₁, x₂, ...,xₖ in a simple graph G, the closed k-stop-distance of set is defined to be d ( ) = m i n Θ ( ) ( d ( Θ ( x ) , Θ ( x ) ) + d ( Θ ( x ) , Θ ( x ) ) + . . . + d ( Θ ( x ) , Θ ( x ) ) ) , where () is the set of all permutations from...

Colouring of cycles in the de Bruijn graphs

Ewa Łazuka, Jerzy Żurawiecki (2000)

Discussiones Mathematicae Graph Theory

We show that the problem of finding the family of all so called the locally reducible factors in the binary de Bruijn graph of order k is equivalent to the problem of finding all colourings of edges in the binary de Bruijn graph of order k-1, where each vertex belongs to exactly two cycles of different colours. In this paper we define and study such colouring for the greater class of the de Bruijn graphs in order to define a class of so called regular factors, which is not so difficult to construct....

Completely Independent Spanning Trees in (Partial) k-Trees

Masayoshi Matsushita, Yota Otachi, Toru Araki (2015)

Discussiones Mathematicae Graph Theory

Two spanning trees T1 and T2 of a graph G are completely independent if, for any two vertices u and v, the paths from u to v in T1 and T2 are internally disjoint. For a graph G, we denote the maximum number of pairwise completely independent spanning trees by cist(G). In this paper, we consider cist(G) when G is a partial k-tree. First we show that [k/2] ≤ cist(G) ≤ k − 1 for any k-tree G. Then we show that for any p ∈ {[k/2], . . . , k − 1}, there exist infinitely many k-trees G such that cist(G)...

Connectivity of path graphs

Martin Knor, L'udovít Niepel (2000)

Discussiones Mathematicae Graph Theory

We prove a necessary and sufficient condition under which a connected graph has a connected P₃-path graph. Moreover, an analogous condition for connectivity of the Pₖ-path graph of a connected graph which does not contain a cycle of length smaller than k+1 is derived.

Currently displaying 1 – 20 of 35

Page 1 Next