Old and new generalizations of line graphs.
A digraph D = (V,A) is arc-traceable if for each arc xy in A, xy lies on a directed path containing all the vertices of V, i.e., hamiltonian path. We prove a conjecture of Quintas [7]: if D is arc-traceable, then the condensation of D is a directed path. We show that the converse of this conjecture is false by providing an example of an upset tournament which is not arc-traceable. We then give a characterization for upset tournaments in terms of their score sequences, characterize which arcs of...
We consider cubic graphs formed with k ≥ 2 disjoint claws (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of are joined to the three vertices of degree 1 of and joined to the three vertices of degree 1 of . Denote by the vertex of degree 3 of and by T the set . In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ 1,2,3) is the graph where the set of vertices induce j cycles (note that the graphs...
In this paper the following theorem is proved: Let be a connected graph of order and let be a matching in . Then there exists a hamiltonian cycle of such that .
A closed walk in a connected graph G that contains every edge of G exactly once is an Eulerian circuit. A graph is Eulerian if it contains an Eulerian circuit. It is well known that a connected graph G is Eulerian if and only if every vertex of G is even. An Eulerian walk in a connected graph G is a closed walk that contains every edge of G at least once, while an irregular Eulerian walk in G is an Eulerian walk that encounters no two edges of G the same number of times. The minimum length of an...