Variations on a sufficient condition for Hamiltonian graphs
Given a 2-connected graph G on n vertices, let G* be its partially square graph, obtained by adding edges uv whenever the vertices u,v have a common neighbor x satisfying the condition , where . In particular, this condition is satisfied if x does not center a claw (an induced ). Clearly G ⊆ G* ⊆ G², where G² is the square of G. For any independent triple X = x,y,z we define σ̅(X) = d(x) + d(y) + d(z) - |N(x) ∩ N(y) ∩ N(z)|. Flandrin et al. proved that a 2-connected graph G is hamiltonian if...