Page 1

Displaying 1 – 4 of 4

Showing per page

Variations on a sufficient condition for Hamiltonian graphs

Ahmed Ainouche, Serge Lapiquonne (2007)

Discussiones Mathematicae Graph Theory

Given a 2-connected graph G on n vertices, let G* be its partially square graph, obtained by adding edges uv whenever the vertices u,v have a common neighbor x satisfying the condition N G ( x ) N G [ u ] N G [ v ] , where N G [ x ] = N G ( x ) x . In particular, this condition is satisfied if x does not center a claw (an induced K 1 , 3 ). Clearly G ⊆ G* ⊆ G², where G² is the square of G. For any independent triple X = x,y,z we define σ̅(X) = d(x) + d(y) + d(z) - |N(x) ∩ N(y) ∩ N(z)|. Flandrin et al. proved that a 2-connected graph G is hamiltonian if...

Vertex-dominating cycles in 2-connected bipartite graphs

Tomoki Yamashita (2007)

Discussiones Mathematicae Graph Theory

A cycle C is a vertex-dominating cycle if every vertex is adjacent to some vertex of C. Bondy and Fan [4] showed that if G is a 2-connected graph with δ(G) ≥ 1/3(|V(G)| - 4), then G has a vertex-dominating cycle. In this paper, we prove that if G is a 2-connected bipartite graph with partite sets V₁ and V₂ such that δ(G) ≥ 1/3(max{|V₁|,|V₂|} + 1), then G has a vertex-dominating cycle.

Currently displaying 1 – 4 of 4

Page 1