The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition....
The paper concerns infinite paths (in particular, the maximum number of pairwise vertex-disjoint ones) in locally finite graphs and in spanning trees of such graphs.
In this paper, we consider the intersection graph of gamma sets in the total graph on ℤₙ. We characterize the values of n for which is complete, bipartite, cycle, chordal and planar. Further, we prove that is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of .
The concept of a line digraph is generalized to that of a directed path graph. The directed path graph Pₖ(D) of a digraph D is obtained by representing the directed paths on k vertices of D by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in D form a directed path on k+1 vertices or form a directed cycle on k vertices in D. In this introductory paper several properties of P₃(D) are studied, in particular with respect to isomorphism and traversability. In our...
Currently displaying 1 –
5 of
5