Page 1

Displaying 1 – 7 of 7

Showing per page

Perfect Set of Euler Tours of Kp,p,p

T. Govindan, A. Muthusamy (2016)

Discussiones Mathematicae Graph Theory

Bermond conjectured that if G is Hamilton cycle decomposable, then L(G), the line graph of G, is Hamilton cycle decomposable. In this paper, we construct a perfect set of Euler tours for the complete tripartite graph Kp,p,p for any prime p and hence prove Bermond’s conjecture for G = Kp,p,p.

Persistency in the Traveling Salesman Problem on Halin graphs

Vladimír Lacko (2000)

Discussiones Mathematicae Graph Theory

For the Traveling Salesman Problem (TSP) on Halin graphs with three types of cost functions: sum, bottleneck and balanced and with arbitrary real edge costs we compute in polynomial time the persistency partition E A l l , E S o m e , E N o n e of the edge set E, where: E A l l = e ∈ E, e belongs to all optimum solutions, E N o n e = e ∈ E, e does not belong to any optimum solution and E S o m e = e ∈ E, e belongs to some but not to all optimum solutions.

Potential forbidden triples implying hamiltonicity: for sufficiently large graphs

Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson (2005)

Discussiones Mathematicae Graph Theory

In [1], Brousek characterizes all triples of connected graphs, G₁,G₂,G₃, with G i = K 1 , 3 for some i = 1,2, or 3, such that all G₁G₂ G₃-free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁,G₂,G₃, none of which is a K 1 , s , s ≥ 3 such that G₁G₂G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In [6], a characterization was given of all triples G₁,G₂,G₃ with none being K 1 , 3 , such that all G₁G₂G₃-free graphs are...

Problems remaining NP-complete for sparse or dense graphs

Ingo Schiermeyer (1995)

Discussiones Mathematicae Graph Theory

For each fixed pair α,c > 0 let INDEPENDENT SET ( m c n α ) and INDEPENDENT SET ( m ( ) - c n α ) be the problem INDEPENDENT SET restricted to graphs on n vertices with m c n α or m ( ) - c n α edges, respectively. Analogously, HAMILTONIAN CIRCUIT ( m n + c n α ) and HAMILTONIAN PATH ( m n + c n α ) are the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted to graphs with m n + c n α edges. For each ϵ > 0 let HAMILTONIAN CIRCUIT (m ≥ (1 - ϵ)(ⁿ₂)) and HAMILTONIAN PATH (m ≥ (1 - ϵ)(ⁿ₂)) be the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted...

Currently displaying 1 – 7 of 7

Page 1