Pairs of disjoint -element subsets far from each other.
Bermond conjectured that if G is Hamilton cycle decomposable, then L(G), the line graph of G, is Hamilton cycle decomposable. In this paper, we construct a perfect set of Euler tours for the complete tripartite graph Kp,p,p for any prime p and hence prove Bermond’s conjecture for G = Kp,p,p.
For the Traveling Salesman Problem (TSP) on Halin graphs with three types of cost functions: sum, bottleneck and balanced and with arbitrary real edge costs we compute in polynomial time the persistency partition , , of the edge set E, where: = e ∈ E, e belongs to all optimum solutions, = e ∈ E, e does not belong to any optimum solution and = e ∈ E, e belongs to some but not to all optimum solutions.
In [1], Brousek characterizes all triples of connected graphs, G₁,G₂,G₃, with for some i = 1,2, or 3, such that all G₁G₂ G₃-free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁,G₂,G₃, none of which is a , s ≥ 3 such that G₁G₂G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In [6], a characterization was given of all triples G₁,G₂,G₃ with none being , such that all G₁G₂G₃-free graphs are...
For each fixed pair α,c > 0 let INDEPENDENT SET () and INDEPENDENT SET () be the problem INDEPENDENT SET restricted to graphs on n vertices with or edges, respectively. Analogously, HAMILTONIAN CIRCUIT () and HAMILTONIAN PATH () are the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted to graphs with edges. For each ϵ > 0 let HAMILTONIAN CIRCUIT (m ≥ (1 - ϵ)(ⁿ₂)) and HAMILTONIAN PATH (m ≥ (1 - ϵ)(ⁿ₂)) be the problems HAMILTONIAN CIRCUIT and HAMILTONIAN PATH restricted...